THE GRAEBER LAB

Publications


 

HOME

RESEARCH

MEMBERS

INSTRUMENTS

PUBLICATIONS

LAB SOFTWARE

CONTACT US

 

 

 

Publications summarized in NIH biosketch ‘CONTRIBUTIONS TO SCIENCE’ format

 

1.    Systems biology of cancer metabolism and cancer copy number alterations (CNA), including mass spectrometry-based metabolomics. The Graeber lab has studied the metabolic networks disregulated in cancer, with emphasis on tying these networks to other levels of regulation such as kinase-based signaling and transcriptional regulation. Our recent work has delineated how copy number alterations (CNA) in aneuploid cancers contribute to aggressive cancer phenotypes such as high glycolysis.

 

a.    Graham, N. A., Minasyan, A., Lomova, A., Cass, A., Balanis, N. G., Friedman, M., Chan, S., Zhao, S., Delgado, A., Go, J., Beck, L., Hurtz, C., Ng, C., Qiao, R., ten Hoeve, J., Palaskas, N., Wu, H., Müschen, M., Multani, A. S., Port, E., Larson, S. M., Schultz, N., Braas, D., Christofk, H. R., Mellinghoff, I. K. & Graeber, T. G. Recurrent patterns of DNA copy number alterations in tumors reflect metabolic selection pressures. Molecular Systems Biology, 2017, 13:914. [article] [pdf] [web resource: Human and mouse cancer genome copy number alteration (CNA) conservation]

b.    Chan, LN, Z Chen, D Braas, J-W Lee, G Xiao, H Geng, KN Cosgun, C Hurtz, S Shojaee, V Cazzaniga, H Schjerven, T Ernst, A Hochhaus, SM Kornblau, M Konopleva, MA Pufall, G Cazzaniga, GJ Liu, TA Milne, HP Koeffler, TS Ross, I Sanchez-Garcia, A Borkhardt, KR Yamamoto, RA Dickins, T.G. Graeber & M Müschen. Metabolic gatekeeper function of B-lymphoid transcription factors. Nature, advanced online publication. doi: 10.1038/nature21076

c.     Graham, N.A., M. Tahmasian, B. Kohli, E. Komisopoulou, M. Zhu, I. Vivanco, M.A. Teitell, Hong Wu, A. Ribas, R.S. Lo, I.K. Mellinghoff, Paul S. Mischel, and T.G. Graeber. Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death.  Molecular Systems Biology, 2012, 8:589. PMCID: PMC3397414.

d.    Palaskas, N., S.M. Larson, N. Schultz, E. Komisopoulou, J. Wong, D. Rohle, C. Campos, N. Yannuzzi, J.R. Osborne, I.Linkov, E.R. Kastenhuber, R. Taschereau, S.B. Plaisier, C. Tran, A. Heguy, H. Wu, C. Sander, M.E. Phelps, C. Brennan, E. Port, J.T. Huse, T.G. Graeber*, I.K. Mellinghoff*.  18F-fluorodeoxy-glucose positron emission tomography (18FDG-PET) marks MYC-overexpressing human basal-like breast cancers.  Cancer Research, 2011, 71: 5164-74. PMC3148325. (*equal contribution and co-corresponding authors).

e.    Rohle, D., J. Popovici-Muller, N. Palaskas, S. Turcan C. Grommes, C. Campos, J. Tsoi, O. Clark, B. Oldrini, E. Komisopoulou, K. Kunii, A. Pedraza, S. Schalm, L. Silverman, A. Miller, F. Wang , H. Yang, Y. Chen,  A. Kernytsky, M.K. Rosenblum, W. Liu, S.A. Biller, S.M. Su, C.W. Brennan , T.A. Chan, T.G. Graeber*, K.E. Yen*, I. K. Mellinghoff*.  An Inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science, 2013 May 3, 340:626-30. * This work is based on equal contributions from the laboratories of T.G.G., K.E.Y., and I.K.M. PMCID PMC3985613.

f.      Fu, X., R.M. Chin, L. Vergnes, H. Hwang, G. Deng, Y. Xing, M.Y. Pai, S. Li, L. Ta, F. Fazlollahi, C.Chen, R.M. Prins, M.A. Teitell, D.A. Nathanson, A. Lai, K.F. Faull, M. Jiang, S.G. Clarke, T.F. Cloughesy, T.G. Graeber, D. Braas, H.R. Christofk, M.E. Jung, K. Reue, and J. Huang. 2-Hydroxyglutarate Inhibits ATP Synthase and mTOR Signaling. Cell Metabolism. 2015. pii: S1550-4131(15)00276-4. [Epub ahead of print]

g.    Thai, M., N.A. Graham, D. Braas, M. Nehil, E. Komisopoulou, S.K. Kurdistani, Frank McCormick, TG Graeber, Heather R Christofk. Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication. Cell Metabolism. 2014. 19(4): 694-701. PMCID PMC4294542.

 

2.    Systems biology of cancer signaling using mass spectrometry-based proteomics. The Graeber lab helped develop the use of label-free quantitative mass spectrometry-based phosphoproteomics in studying the signaling networks driving cancer, with a particular focus on kinase inhibitor resistance mechanisms. Among other cancer topics, this work includes characterization of signaling networks in leukemia, such as that driven by Bcr-Abl, and in melanomas driven by BRAF mutations (see the related section 4 below). Data from our unbiased approaches (in this and the other sections below) has repeatedly led us to characterize feedback loops and synergies in cancer and immune biology. In our work we have pioneered using genome scale approaches (e.g. proteomics) side by side with targeted approaches (e.g. antibody-based) in iterative experimentation to simultaneously build a network-scale and a molecularly detailed view of biological processes.

 

a.    Rubbi, L., B. Titz, L. Brown, E. Galvan, E. Komisopoulou, S.S. Chen, T. Low, M. Tahmasian, B. Skaggs, M. Müschen, M. Pellegrini, T. G. Graeber. Global phosphoproteomics reveals crosstalk between Bcr-Abl and negative feedback mechanisms controlling Src signaling. Science Signaling, 2011, 4(166):ra18. PMCID PMC4057100.

b.    Drake, JM, EO Paull, NA Graham, JK Lee, BA Smith, B Titz, T Stoyanova, CM Faltermeier, V Uzunangelov, DE Carlin, DT Fleming, CK Wong, Y Newton, S Sudha, AA Vashisht, J Huang, JA Wohlschlegel, TG Graeber, Owen N Witte, & Joshua M Stuart, Patient-Specific Signaling Networks in Lethal Prostate Cancer by Phosphoproteome-Guided Multi-Omic Integration, Cell, Aug 2016, 166:1041.

c.     Drake, J.M., N.A. Graham, J.K. Lee, T. Stoyanova, C.M. Faltermeier, S. Sudha, B. Titz, J. Huang, K.J. Pienta, T.G. Graeber, & Owen N. Witte.  Metastatic castration-resistant prostate cancer reveals intrapatient similarity and interpatient heterogeneity of therapeutic kinase targets. Proc Natl Acad Sci U S A. 2013 Dec 3, 110(49):E4762-9. PMCID PMC3856845.

d.    Titz, B., T. Low, E. Komisopoulou, S. Chen, L. Rubbi, T.G. Graeber. The proximal signaling network of the BCR-ABL1 oncogene shows a modular organization. Oncogene, 2010, 29: 5895-5910.

e.    Skaggs, B., M. Gorre, A. Ryvkin, M. Burgess, Y. Xie, Y. Han, E. Komisopoulou, L.M. Brown, J.A. Loo, E.M. Landaw, C.L. Sawyers, and T.G. Graeber.  Phosphorylation of the ATP-binding loop directs oncogenicity of drug-resistant BCR-ABL mutants.  Proc. Natl. Acad. Sci. USA, 2006 December 19, 103(51): 19466. 

 

3.    Bioinformatic algorithms – development and application. The Graeber lab has developed novel algorithms and approaches for characterizing molecular profiling data, and for integrating such data with additional data sources such as data bases and the literature.  Many of these approaches were first developed in cancer projects, but have found applications in other areas such as immune function and brain development. These bioinformatic approaches continue to be used in our lab, and in publications from other groups. We provide web-based implementations of our algorithms. Three algorithm/theoretical manuscripts are listed below (a-c). Furthermore, we have a long track record of successful implementation of bioinformatic and computational approaches in cancer and immune biology discovery and classification. These implementations are part of the vast majority of our independent and collaborative manuscripts, including two of the manuscripts below (d-e).

 

a.    Plaisier S.B., R. Taschereau, J.A. Wong, and T.G. Graeber.  Rank-rank hypergeometric overlap: identification of statistically significant overlap between gene-expression signatures. Nucleic Acids Research, September 2010, 38(17): e169. PMCID: PMC2943622. Web-based implementation accessible at http://systems.crump.ucla.edu/rankrank/.

b.    Graeber, T.G., and D. Eisenberg.  Bioinformatic identification of potential autocrine signaling loops in cancers from gene expression profiles. Nature Genetics, 2001 November, 29(3):295-300.

c.     Graeber, T.G., J.R. Heath, B.J. Skaggs, M.E. Phelps, F. Remacle and R. D. Levine, Maximal Entropy Inference of Oncogenicity from Phosphorylation Signaling. Proc Natl Acad Sci U S A, March 2010, 107(13), 6112-6117. PMCID: PMC2851899.

d.    D.J. Mulholland, L.M. Tran, Y. Li, H. Cai, A. Morim, S. Wang, S. Plaisier, I.P. Garraway, J. Huang, T.G. Graeber,  Hong Wu.  Cell Autonomous Role of PTEN in Regulating Castration-Resistant Prostate Cancer Growth. Cancer Cell, 2011, 19(6):792-804. (Bioinformatic contribution)

e.    Ellwood-Yen, K., T.G. Graeber, J. Wongvipat, M. Luisa-Aripse, J. Zhang., R. Matusik, G.V. Thomas and C.L. Sawyers.  Myc-driven murine prostate cancer shares molecular features with human prostate tumors.  Cancer Cell, 2003 September 4, 4(3):223-38. (computational biology contribution)

 

4.    Tumor immunology and melanoma biology. The Graeber lab has applied profiling approaches to gaining leads and understanding of both melanoma cancer biology and aberrant signal transduction, as well as characterization of immune cell function in immunotherapy.

 

a.    Titz, B, A Lomova, A Le, W Hugo, X Kong, J ten Hoeve, M Friedman, H Shi, G Moriceau, C Song, A Hong, M Atefi, R Li, E Komisopoulou, A Ribas, RS Lo, and TG Graeber. JUN dependency in distinct early and late BRAF inhibition adaptation states of melanoma. Cell Discovery, Sept 2016, 2:16028.

b.    Atefi, M, B Titz, J Tsoi, E Avramis, A Le, C Ng, A Lomova, A Lassen, M Friedman, B Chmielowski, A Ribas and TG Graeber. CRAF R391W is a melanoma driver oncogene. Scientific Reports, June 2016, 6:27454.  PMCID: PMC4897636.

c.     Zaretsky, JM, A Garcia-Diaz, DS Shin, H Escuin-Ordinas, W Hugo, S Hu-Lieskovan, DY Torrejon, G Abril-Rodriguez, S Sandoval, L Barthly, J Saco, BH Moreno, R Mezzadra, B Chmielowski, K Ruchalski, IP Shintaku, PJ Sanchez, C Puig-Saus, G Cherry, E Seja, X Kong, J Pang, B Berent-Maoz, B Comin-Anduix, TG Graeber, PC Tumeh, TNM Schumacher, RS Lo, A Ribas. Acquired Resistance to PD-1 Blockade through Interferon Pathway Mutations. New England Journal of Medicine (NEJM), 2016 Sep, 375:819-29.

d.    Hu-Lieskovan, S., S. Mok, B. Homet Moreno, J. Tsoi, L. Robert Faja, L. Goedert, E.M. Pinheiro, R.C. Koya, T.G. Graeber, B. Comin-Anduix, A. Ribas. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAFV600E melanoma. Science Translational Medicine, 2015 March 18, 7:279ra41. PMCID: PMC4765379.Hu-Lieskovan, S., S. Mok, B. Homet Moreno, J. Tsoi, L. Robert Faja, L. Goedert, E.M. Pinheiro, R.C. Koya, T.G. Graeber, B. Comin-Anduix, A. Ribas. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAFV600E melanoma. Science Translational Medicine, 2015 March 18, 7:279ra41.

e.    Mueller J., O. Krijgsman, J. Tsoi, L. Robert, W. Hugo, C. Song, X. Kong, P.A. Possik, P. Cornelissen-Steijger, M. Geukes, K. Kemper, C. Goding, U. McDermott, C. Blank, J. Haanen, T.G. Graeber, A. Ribas, R.S. Lo and D.S. Peeper.  Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma. Nature Communications, 2014 Dec 15, 5:5712.

f.      Poulikakos, P.I., Y. Persaud, M. Janakiraman, X. Kong, C. Ng, G. Moriceau, H. Shi, M. Atefi, B. Titz, M.T. Gabay, M. Salton, K.B. Dahlman, T. Madhavi, J.A. Wargo, K.T. Flaherty, M.C. Kelley, T. Misteli, J.A. Sosman, P.B. Chapman, T.G. Graeber, A.Ribas, R.S. Lo, N.Rosen, D.B. Solit. Acquired resistance to RAF inhibitors is mediated by splicing isoforms of BRAF(V600E) that dimerize in a RAS independent manner. Nature, 2011 Nov 23, 480(7377):387-90. PMCID: PMC3266695

 

5.    Skin disease and immunology bioinformatics & integrative genomics. Through the development of bioinformatic approaches the Graeber lab has worked to use transcriptome and miRNA profiling data to gain insight into the dysregulation present in diseased and infected skin tissue, and into the functional aspects of the spectrum of immune cells that combat the infections.

 

a.    Teles, R.M.B., T.G. Graeber*, S.R. Krutzik, D.Montoya, M.Schenk, D.J. Lee, E. Kelly-Scumpia, R. Chun, E.N. Sarno, T.H. Rea, M. Hewison, J.S. Adams, B.R. Bloom, G. Cheng, R.L. Modlin. Type I IFN suppresses Type II IFN triggered human antimicrobial responses.  Science, 2013, 339:1448-53. PMCID: PMC3653587. (Bioinformatic and data-analysis contribution)

b.    Liu, P.T., M. Wheelwright, R. Teles, E. Komisopoulou, K. Edfeldt, B. Ferguson, A. Vazirnia, T. Rea, E.N. Sarno, T.G. Graeber, and R.L. Modlin.  Induction of miRNAs during leprosy infection inhibits a host antimicrobial pathway.  Nature Medicine, 2012;18:267-73. PMC3274599. (Bioinformatic contribution).

c.     Schenk M., S.R. Krutzik, P.A. Sieling, D.J. Lee, R.M.B. Teles, M.T. Ochoa, E.N. Sarno, T.H. Rea, T.G. Graeber, S. Kim, G. Cheng and R.L. Modlin.  NOD2 triggers an IL-32 dependent human dendritic cell program in leprosy. Nature Medicine, 2012 Mar 25;18(4):555-63. PMC3348859 (Bioinformatic contribution).

d.    Bleharski J.R.*, H. Li*, C. Meinken*, T.G. Graeber*, M.-T. Ochoa, M. Yamamura, A. Burdick, E.N. Sarno, M. Wagner, M. Röllinghoff, T.H. Rea, M. Colonna, S. Stenger, B.R. Bloom, D. Eisenberg and R.L. Modlin.  Use of genetic profiling in leprosy to discriminate clinical forms of the disease. Science, 2003 September 12, 301(5639):1527-30.  (*equal contribution)

 

6.    Identification of hypoxia as a physiological selective force for p53 mutation. The findings from the ressearch I led as a graduate student provided an explanation for why p53 is mutated in a high percentage of primary tumors. This work is covered by many reviews (Hanahan & Weinberg, The hallmarks of cancer, Cell 100:57) and textbooks (Robbins pathologic basis of disease, 1999).

a.    Graeber, T.G., C. Osmanian, T. Jacks, D.E. Housman, C.J. Koch, S.W. Lowe and A.J. Giaccia.  Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature, 1996 January 4, 379(6560):88-91. (cited over 2350 times; accompanying News and Views)

b.    Graeber, T.G., J.F. Peterson, M. Tsai, K. Monica, A.J. Fornace Jr. and A.J. Giaccia. Hypoxia induces accumulation of p53 protein, but activation of a G1-phase checkpoint by low-oxygen conditions is independent of p53 status. Molecular and Cellular Biology, 1994, 14(9):6264-6277. PMCID: PMC359153

 

 

 

 

PUBLICATIONS

 

Complete list of published work online in NCBI MyBibliography:  

https://www.ncbi.nlm.nih.gov/sites/myncbi/thomas.graeber.1/bibliography/47448770/public/?sort=date&direction=descending

 

 

       Graham, N. A., Minasyan, A., Lomova, A., Cass, A., Balanis, N. G., Friedman, M., Chan, S., Zhao, S., Delgado, A., Go, J., Beck, L., Hurtz, C., Ng, C., Qiao, R., Hoeve, J. ten, Palaskas, N., Wu, H., Müschen, M., Multani, A. S., Port, E., Larson, S. M., Schultz, N., Braas, D., Christofk, H. R., Mellinghoff, I. K. & Graeber, T. G. Recurrent patterns of DNA copy number alterations in tumors reflect metabolic selection pressures. Molecular Systems Biology. 13, 914 (2017). [article] [pdf]

 

       Chan, LN, Z Chen, D Braas, J-W Lee, G Xiao, H Geng, KN Cosgun, C Hurtz, S Shojaee, V Cazzaniga, H Schjerven, T Ernst, A Hochhaus, SM Kornblau, M Konopleva, MA Pufall, G Cazzaniga, GJ Liu, TA Milne, HP Koeffler, TS Ross, I Sanchez-Garcia, A Borkhardt, KR Yamamoto, RA Dickins, T.G. Graeber & M Müschen. Metabolic gatekeeper function of B-lymphoid transcription factors. Nature, advanced online publication. doi: 10.1038/nature21076

 

       Fu X, Chin RM, Vergnes L, Hwang H, Deng G, Xing Y, Pai MY, Li S, Ta L, Fazlollahi F, Chen C, Prins RM, Teitell MA, Nathanson DA, Lai A, Faull KF, Jiang M, Clarke SG, Cloughesy TF, Graeber TG, Braas D, Christofk HR, Jung ME, Reue K, Huang J. 2-Hydroxyglutarate Inhibits ATP Synthase and mTOR Signaling. Cell Metabolism. 2015 Jul 14. pii: S1550-4131(15)00276-4. [Epub ahead of print]

 

       Goodwin JF, Kothari V, Drake JM, Zhao S, Dylgjeri E, Dean JL, Schiewer MJ, McNair C, Jones JK, Aytes A, Magee MS, Snook AE, Zhu Z, Den RB, Birbe RC, Gomella LG, Graham NA, Vashisht AA, Wohlschlegel JA, Graeber TG, Karnes RJ, Takhar M, Davicioni E, Tomlins SA, Abate-Shen C, Sharifi N, Witte ON, Feng FY, Knudsen KE. DNA-PKcs-Mediated Transcriptional Regulation Drives Prostate Cancer Progression and Metastasis. Cancer Cell. 2015. 28(1):97-113.

 

       Chen Z, Shojaee S, Buchner M, Geng H, Lee JW, Klemm L, Titz B, Graeber TG, Park E, Tan YX, Satterthwaite A, Paietta E, Hunger SP, Willman CL, Melnick A, Loh ML, Jung JU, Coligan JE, Bolland S, Mak TW, Limnander A, Jumaa H, Reth M, Weiss A, Lowell CA, Müschen M. Signalling thresholds and negative B-cell selection in acute lymphoblastic leukaemia. Nature. 521(7552):357-61.

 

       Ting P.Y., C.W. Johnson, C. Fang, X. Cao, T.G. Graeber, C. Mattos, J.J. Colicelli. Tyrosine phosphorylation of RAS by ABL allosterically enhances effector binding, FASEB Journal. 2015. pii: fj.15-271510. [Epub ahead of print]

 

       Mok, S, J Tsoi, RC Koya, S Hu-Lieskovan, BL West, G Bollag, TG Graeber, A Ribas.  Inhibition of colony stimulating factor-1 receptor improves anti-tumor efficacy of BRAF inhibition. BMC Cancer. 2015 May 5;15(1):356.

 

       Ting PY, Damoiseaux R, Titz B, Bradley KA, Graeber TG, Fernández-Vega V, Bannister TD, Chase P, Nair R, Scampavia L, Hodder P, Spicer TP, Colicelli J. Identification of Small Molecules that Disrupt Signaling between ABL and Its Positive Regulator RIN1. PLoS One. 2015 Mar 26;10(3):e0121833.

 

       Hu-Lieskovan, S., S. Mok, B. Homet Moreno, J. Tsoi, L. Robert, L. Goedert, E.M. Pinheiro, R.C. Koya, T.G. Graeber, B. Comin-Anduix, A. Ribas. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAFV600E melanoma. Science Translational Medicine. 2015 March 18, 7:279ra41.

 

       Atefi M, Titz B, Avramis E, Ng C, Wong D, Lassen A, Cerniglia M, Escuin-Ordinas H, Foulad D, Comin-Anduix B, Graeber TG, Ribas A. Combination of Pan-RAF and MEK inhibitors in NRAS mutant melanoma. Molecular Cancer. 2015 Feb 3;14(1):27.

 

       Ploper D, Taelman VF, Robert L, Perez BS, Titz B, Chen HW, Graeber TG, von Euw E, Ribas A, De Robertis EM. MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells. Proceedings of the National Academy of Sciences, U.S.A. 2015 Feb 3;112(5):E420-9.

 

       Mueller J., O. Krijgsman, J. Tsoi, L. Robert, W. Hugo, C. Song, X. Kong, P.A. Possik, P. Cornelissen-Steijger, M. Geukes Foppen, K. Kemper, C. Goding, U. McDermott, C. Blank, J. Haanen, T.G. Graeber, A. Ribas, R.S. Lo and D.S. Peeper.  Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma. Nature Communications, 2014 Dec 15, 5:5712.

 

       Inkeles MS, Scumpia PO, Swindell WR, Lopez D, Teles RM, Graeber TG, Meller S, Homey B, Elder JT, Gilliet M, Modlin RL, Pellegrini M.  Comparison of Molecular Signatures from Multiple Skin Diseases Identifies Mechanisms of Immunopathogenesis. Journal of Investigative Dermatology. 2015 Jan;135(1):151-9.

 

       Wong, DJL, L Robert, M Atefi, A Lassen, M Cerniglia, E Avramis, J Tsoi, D Foulad, T.G. Graeber, B Comin-Anduix, A Samatar, RS Lo, A Ribas. Antitumor Activity of the ERK Inhibitor SCH722984 Against BRAF Mutant, NRAS Mutant and Wild-Type Melanoma. Molecular Cancer. 2014 Aug 20;13(1):194.

 

       Anderson JL, B Titz, R Akiyama, E Komisopoulou, A Park, WD Tap, T.G. Graeber, CT Denny. Phosphoproteomic Profiling Reveals IL6-mediated Paracrine Signaling within the Ewing Sarcoma Family of Tumors. Molecular Cancer Research. 2014 Dec;12(12):1740-54.

 

       Graham, N.A. and T.G. Graeber. Complexity of metastasis-associated SDF-1 ligand signaling in breast cancer stem cells. Proceedings of the National Academy of Sciences, U.S.A, 2014 May 27; 111(21): 7503-4. PMCID: PMC4040584

 

       Atefi M, Avramis E, Lassen A, Wong DJ, Robert L, Foulad D, Cerniglia M, Titz B, Chodon T, T.G. Graeber, Comin-Anduix B, A. Ribas. Effects of MAPK and PI3K Pathways on PD-L1 Expression in Melanoma. Clinical Cancer Research. 2014 Jul 1;20(13):3446-57.

 

       Tong, M., I. McHardy, P. Ruegger, M. Goudarzi, P. Kashyap, T. Haritunians, X. Li, T.G. Graeber, E. Schwager, C. Huttenhower, A. Fornace Jr., J. Sonnenburg, D. McGovern, J. Borneman, and J. Braun. Reprograming of Gut Microbiome Energy Metabolism by the FUT2 Crohn's Disease Risk Polymorphism. The ISME Journal (Journal of the International Society for Microbial Ecology). 2014 Nov; 8(11):2193-206.

 

       Robert, L., Tsoi, J., Wang, X., Emerson, R., Homet, B., Chodon, T., Mok, S., Huang, R.R., Cochran, A.J., Comin-Anduix, B. Koya, R.C., T.G. Graeber, Robins, H., A. Ribas. CTLA4 blockade broadens the peripheral T cell receptor (TCR) repertoire. Clinical Cancer Research. 2014 May 1;20(9):2424-32.

 

       Zimman, A., B. Titz, E. Komisopoulou, S. Biswas, T.G. Graeber, and E.A. Podrez. Phosphoproteomic analysis of platelets activated by pro-thrombotic oxidized phospholipids and thrombin. PLoS One. 2014 Jan 6, 9(1):e84488.

 

       Escuin-Ordinas, H., M. Atefi, Y. Fu, A. Cass, C. Ng, R.R. Huang, S. Yashar, B. Comin-Anduix, E. Avramis, A.J. Cochran, R. Marais, R.S. Lo, T.G. Graeber, H.R. Herschman, A. Ribas. COX-2 inhibition prevents the appearance of cutaneous squamous cell carcinomas induced by BRAF inhibitors. Molecular Oncology. March 2014, 8(2):250-260.

 

       McHardy, I.H., M. Goudarzi, M. Tong, P. Ruegger, E. Schwager, J.R. Weger, T.G. Graeber, J. Sonnenburg, S. Horvath, C. Huttenhower, D. McGovern, A.J. Fornace Jr., J. Borneman and J. Braun, Integrative analysis of the microbiome and metabolome of the human intestinal mucosal surface reveals exquisite inter-relationships. Microbiome. 2013, 1:17.

 

       Mok S, R.C. Koya, C. Tsui, J. Xu, L. Robert, L. Wu, T.G. Graeber, B.L. West, G. Bollag, A. Ribas. Inhibition of CSF-1 Receptor Improves the Antitumor Efficacy of Adoptive Cell Transfer Immunotherapy. Cancer Research. 2014 Jan 1;74(1):153-61.

 

       Swaminathan, S., C. Huang, H. Geng, Z. Chen, R. Harvey, H. Kang, C. Ng, B. Titz, C. Hurtz, F. Sadiyah, D. Nowak, G.B. Thoennissen, V. Rand, T.G. Graeber, H.P. Koeffler, W.L. Carroll, C.L. Willman, A.G. Hall, K. Igarashi, A. Melnick, M. Müschen. BACH2 mediates negative selection and p53-dependent tumor suppression at the pre-B cell receptor checkpoint. Nature Medicine, 2013 Aug; 19(8):1014-22.

 

       Ahler, E., W.J. Sullivan, A. Cass, D. Braas, A.G. York, S.J. Bensinger, T.G. Graeber, Heather R. Christofk.  Doxycycline alters metabolism and proliferation of human cell lines. PLoS One, 2013 May 31; 8(5):e64561.

 

       Zimman, A., J.A. Berliner, and T.G. Graeber. Phosphoproteomic analysis of aortic endothelial cells activated by oxidized phospholipids. In Methods in Molecular Biology (Heart Proteomics), 2013;1000:53-69, Vivanco Martinez Fernando, ed. (Humana Press).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


CLA Homepage

[Back to homepage]

Please direct any feedback for this site to Evangelia Komisopoulou.
Last modified: May 8, 2013