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SUMMARY
Trans-differentiation from an adenocarcinoma to a small cell neuroendocrine state is associatedwith therapy
resistance in multiple cancer types. To gain insight into the underlying molecular events of the trans-differ-
entiation, we perform a multi-omics time course analysis of a pan-small cell neuroendocrine cancer model
(termed PARCB), a forward genetic transformation using human prostate basal cells and identify a shared
developmental, arc-like, and entropy-high trajectory among all transformation model replicates. Further
mapping with single cell resolution reveals two distinct lineages defined by mutually exclusive expression
of ASCL1 or ASCL2. Temporal regulation by groups of transcription factors across developmental stages re-
veals that cellular reprogramming precedes the induction of neuronal programs. TFAP4 and ASCL1/2 feed-
back are identified as potential regulators of ASCL1 and ASCL2 expression. Our study provides temporal
transcriptional patterns and uncovers pan-tissue parallels between prostate and lung cancers, as well as
connections to normal neuroendocrine cell states.
INTRODUCTION

Small cell neuroendocrine (SCN) cancer is an aggressive variant

that arises from multiple tissues such as the lung and prostate.1,2

SCN is characterized by its histologically defined small cell

morphology of densely packed cells with scant cytoplasm, poor

differentiation, and aggressive tumor growth, as well as exp-

ression of canonical neuroendocrine markers including SYP,

CHGA, andNCAM1.3 In addition to their phenotypic resemblance,

SCN cancers across multiple tissues show a striking transcrip-
Cancer Cell 41, 1–17, De
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tional and epigenetic convergence in clinically annotated tu-

mors.4,5 This molecular signature convergence is recapitulated

by our established SCN transformation model that utilizes either

normal lung epithelial cells, patient-derived benign prostate

epithelial or bladder urothelial cells as the cells of origin.6,7

Small cell neuroendocrine prostate cancer (SCNPC) occurs

either de novo (<1% of untreated prostate cancer cases), or

through therapy-mediated transversion of castration resistant

prostate cancer (CRPC) (�20% of the resistance cases).

The SCN terminology has been adopted to reflect the shared
cember 11, 2023 ª 2023 The Authors. Published by Elsevier Inc. 1
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Figure 1. Temporal gene expression programs of the PARCB transformation model reveal SCNPC trans-differentiation pathways

(A) Schematic summary of PARCB time course study and representative hematoxylin and eosin (H&E) staining and immunohistochemistry (IHC) staining of

neuroendocrine markers (SYP and NCAM1) on sequential tumors from the tissue microarray. Time point (TP1-6) samples were sequenced using bulk RNA

sequencing (green circle), bulk ATAC-sequencing (red circle) and/or single cell RNA sequencing (blue circle, tumors only). Scale bars: 100mmand 200mm for H&E

and IHC images, respectively.

(legend continued on next page)
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pan-tissue aspects of multiple SCN tumors, such as small cell

lung cancer (SCLC). CRPC is a resistant variant of prostate

adenocarcinoma (PRAD), which often responds to androgen

deprivation therapy.8,9 Trans-differentiation from PRAD to the

SCNPC state entails complicated epigenetic reprogramming at

the chromatin level, resulting in transcriptional changes driven

by a number of key master regulators.10,11 For example, methyl-

ation modulated by EZH2 and activation of transcriptional pro-

grams by SOX2 are required in TP53 and RB1 loss-mediated

neuroendocrine differentiation in mouse transgenic models of

SCNPC.12,13 Oncogenic mutation of FOXA1 potentiate pioneer-

ing activity and differentiation status of prostate cancer.14,15

Lastly, knockdown of transcription factors such as ONECUT2

has been shown to inhibit SCN differentiation.16,17 While the

importance of these factors has been demonstrated, the chrono-

logical sequence of the associated epigenetic and transcrip-

tional changes remains uncharacterized during the progression

to SCNPC. Examination of the temporal evolution of lung cancer

revealed a connection between transcription factor defined sub-

types and cell plasticity.18,19 In our study, we sought to answer

the following questions: (1) when do SCN-associated transcrip-

tion factors emerge during SCNPC progression, (2) how do they

coordinate SCN differentiation, and (3) can we identify a transi-

tion state defined by transcription factors that can be targeted?

Leveraging our previously developed human pan-small cell

neuroendocrine cancer model, the PARCB forward genetics

transformation model (driven by knockdown of RB1, alongside

exogenous expression of dominant negative TP53, cMYC,

BCL2, and myristoylated AKT1 via three lentiviral vectors),6,7 tu-

mor samples were harvested at different time points for multi-

omics analyses. The transcriptional and epigenetic status of

each time point was determined using integrative bulk RNA

sequencing, ATAC sequencing, and single cell RNA sequencing.

This longitudinal study provides insight into the temporal evolution

of the epigenetic and transcriptional landscape during trans-dif-

ferentiation and small cell cancer progression. We found consis-

tent transcriptional patterns and differentiation trajectories across

samples generated from independent patient tissues, as well as a

bifurcation of end-stage neuroendocrine lineages, defined by

ASCL1 and ASCL2 and their associated programs.

Achates-scute complex (AS-C) proteins are basic-helix-loop-

helix (bHLH) transcription factors, first identified in Drosophila

melanogaster.20 They are important in thedevelopment of periph-

eral nervous systems and sensory organs.21 Mammalian ASCL1

is a well-known neuroendocrine transcription factor in small cell

cancers.22–24 Independently, ASCL2 is involved in embryonic

development, colorectal stem cell biology and cancer.25–30

ASCL2 is largely understudied in SCNPC, mainly shown to be

co-expressed with POU2F3 in non-neuroendocrine cell popula-
(B) Projection of the PARCB time course samples onto the PCA framework defined

LUAD norm: lung adenocarcinoma adjacent normal tissue. SCLC: small cell lun

cinoma adjacent normal tissue. CRPC: castration resistant prostate cancer. SCN

(C) Average gene expression of selected SCNPC-associated proteins and marke

(D) Heatmap of hierarchical clusters (HC) of samples (columns) and corresponding

by one HC vs. all other HCs.

(E) PCA of the PARCB time course samples and trans-differentiation trajectorie

version of this figure is available on the PARCB Multi-omics Explorer website. [F

(F) Selected enriched GO terms across HC. See also Figure S1.
tions.5,31Here, our study reveals temporal transcriptional patterns

during SCNdifferentiation in prostate cancer and associated line-

age programs governed by general mutually exclusivity between

ASCL1 and ASCL2. Follow-up analysis elucidated a transcrip-

tional networkcircuitybetweenASCL1,ASCL2,and the transcrip-

tion factor TFAP4 which was implicated by the trajectory data.

RESULTS

Temporal gene expression programs of the PARCB
transformation model reveal trans-differentiation
pathways
To determine the timing of SCN differentiation events during

prostate cancer development, we utilized the PARCBmodel sys-

tem.6 Independent transformations were performed on basal

cells extracted from benign regions of epithelial tissue from 10

PRAD patients. Basal cells were transformed by the oncogenic

lentiviral PARCB cocktail and subsequently cultured in an orga-

noid system in vitro.6 Transformed organoid-expanded cells

from each patient tissue sample were subcutaneously implanted

into multiple immunocompromisedmice to allow for time-course

collection of tumors from the matched starting material (Fig-

ure 1A). The tumors were collected at approximately two-week

intervals until reaching 1 cm3 in size or occurrence of ulceration,

whichever came first. The transformed tumor cells were triply

fluorescent due to the lentiviral integration,6 which allowed for

cancer cell purification by fluorescence-activated cell sorting

(FACS) followed by multi-omics sequencing and analysis (Fig-

ure 1A). Each patient series (P1-P10) contains five to six time

point samples ranging from basal cells (TP1) to organoids

(TP2) to tumors (TP3-TP5/TP6) (Figure 1A). Upon histological ex-

amination of the tumor tissues by pathologists, we found that the

time course tumors transitioned from squamous, to adenocarci-

noma, then to mixed and eventually SCN phenotypes (Figures

1A and S1A–S1C). Furthermore, clinically defined neuroendo-

crine markers, including SYP and NCAM1, emerged during the

transition to late stages of the tumor progression (Figure 1A).

The basal cell marker p63was only positive in early-stage tumors

by immunohistochemistry (IHC) staining (Figure S1D).

We first performed a temporal analysis of gene expression us-

ing bulk RNA sequencing to understand the changes in the tran-

scriptional landscape during SCNPC trans-differentiation. By

projection of PARCB samples onto principal component anal-

ysis (PCA) of clinical lung and prostate cancer tumor sam-

ples,4,10,32–36 we validated that PARCB time course samples

follow the transcriptionally defined convergence trajectory from

adenocarcinoma to SCN states (Figures 1B and S1E). Additional

SCNPC associated factors including ASCL1 and NEUROD1

were also elevated during the progression (Figure 1C). The
by pan-cancer clinical tumor datasets.4,10,32–36 LUAD: Lung adenocarcinoma.

g cancer. PRAD: prostate adenocarcinoma. PRAD norm: prostate adenocar-

PC: small cell neuroendocrine prostate cancer.

rs.

differentially upregulated genemodules (rows). Differential expression defined

s including primary arc and secondary bifurcation. A 3-dimensional rotatable

or review, a 3D rotatable version is included as Data S1.].
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mRNA of androgen receptor (AR) was expressed in tumors at the

early stage (Figure 1C), but the protein level was not detectable

by immunostaining (Figure S1D). Taken together, the histological

and omics data indicate that PARCB time course tumors recapit-

ulate both the phenotypic and transcriptional changes observed

in the clinic and provide a model system for studying the tempo-

ral evolution of SCNPC development.

To determine the transformation trajectories among the time

course series generated from 10 independent patient samples

(P1–P10), we performed clustering and PCA of the transcrip-

tomic data. To account for potential asynchronous development

among each patient series and each individual tumor, we defined

hierarchical clusters (HCs) of samples by their corresponding dif-

ferential gene modules and found the resulting 6 clusters (HC1–

6) to generally correspond with the time of collection (Figure 1D;

Table S1A). This provides a clustering-based trans-differentia-

tion reference frame and informs our subsequent multi-omics

analyses. Unsupervised PCA demonstrates that the individual

transformation paths of each series follow a generally consistent

‘‘arc-like’’ trajectory with a discernable bifurcation in late-stage

samples (Figures 1E, S1E, and S1F; Table S1B). The late tumors

were hence further defined as ‘‘Class I’’ and ‘‘Class II’’ tumors

with correspondent HC5 and HC6 gene modules, respectively.

HC2 to HC6 had elevated SCNPC signature scores compared

to adenocarcinoma signature score (Figure S1G). This finding

supports the existence of two transcriptional programs or end-

points defining the terminal SCNPC tumor phenotypes.

Gene ontology enrichment analysis of the corresponding 6 dif-

ferential gene modules identified biological processes enriched

uniquely or shared among HCs, including Inflammatory response

(HC1 and HC3, patient derived basal cells and early tumors,

respectively), cell proliferation (HC2, in vitro organoids), epidermis

development (HC3, early tumors), cell activation (HC4, transitional

tumors), stem cell differentiation (HC5, Class I late tumors) and

neuro-/chemical synapse (HC5 and HC6, both classes of late

tumors) (Figure 1E; Table S1C). The transcriptome evolution sup-

ports the idea that trans-differentiation from adenocarcinoma to

the SCN state is a systematically coordinated process that in-

volves a transitional stage followed by bifurcated pathways en-

riched in neuronal/neuroendocrine gene signatures.

Sequential transcription regulators modulate
reprogramming and neuroendocrine programs through
a highly entropic and accessible chromatin state
Temporal analyses on single transcription factor defined sub-

types of SCLC models have delineated lineage plasticity in the

development of lung neuroendocrine tumors.18 We sought to

define the transcriptional evolution in SCNPC through an exten-

sive survey of over 1,600 transcription factors37 by chromatin

accessibility analyses using ATAC sequencing.38 A significant

increase in overall accessible chromatin peaks across chromo-

somes is observed starting at the tumors at transitional stage

(HC4) to late stages (HC5 and HC6) (Figure 2A). Unsupervised

PCA using ATAC-sequencing data showed an arc-like and bifur-

cated trajectory consistent with the pattern observed using the

RNA-sequencing data (Figures 1D and 2B). The Shannon en-

tropy has been used to estimate the plasticity potential of a

biological sample to change cellular state.39,40 We found that

transitional samples (HC4) have the highest entropy (Figure 2B),
4 Cancer Cell 41, 1–17, December 11, 2023
suggesting there exists a high potential and less well-defined

transcriptional state during the trans-differentiation process.

To identify transcription factors that recognize the chromatin

accessible regions at each stage of the transformation trajectory,

we first looked at the overall accessibility near the transcription

start sites (TSS) (Figure 2C). Transitional samples (HC4) have a

strong increase in the accessible peaks as estimated by Shannon

entropy calculations (Figures 2B and 2C), consistent with the

gene-expression-based entropy calculations (Figure S2A). Next,

motif enrichment analysiswas performed on the accessible peaks

from each HCs in a ‘‘one versus the rest’’ fashion. Since transcrip-

tion factors from the same family share similar motifs and are

deposited into a variety of databases, we used a pipeline that ap-

plies an ensemble of existing computational tools and suites of

motifs (denovo and known)41 (Figure 2D; Table S1D).Motif enrich-

ment analysis implicated that (1) representative stress-responsive

factors such as NFkB, JUN, ATF, and STAT proteins were active

from early to transition stage (HC1-4), (2) reprogramming factors

such as POU/OCT and SOX families were active in Class I (HC5)

tumors, and (3) neuronal/neural factors including ASCL and

NEUROD family proteins were found at the later stage in Class II

(HC6) tumors (Figure 2D). Due to ASCL1, ASCL2, and other

bHLH factors sharing the same E-box motif, and the stringent

‘‘one HC versus the rest’’ differential accessibility analysis, the

motif suite containing ASCL1 and ASCL2 factors is highly en-

riched and ranked in HC6 compared toHC5 (Figure 2D). Nonethe-

less, when HC6 is left out of the analysis, HC5 does demonstrate

strong enrichment for the motif suite containing ASCL1 and

ASCL2 factors, compared toHC1-4. (FigureS2B). The enrichment

of stem-like and neuroendocrine programs in HC4-5 and HC6,

respectively, was further confirmed by signature scores derived

from the literature33,42 (Figure S2C). This analysis provides a

view of the overall transcriptional shift of the chromatin accessi-

bility during trans-differentiation.

To determine whether expression of the transcription factors

corresponds to their inferred activity from the motif enrichment

analysis, we summarized the top ranked transcription factors

(based onPC1, PC2, and PC3 loadings) across the transformation

stages (HC1-HC6) (Figures 2E and S2D; Table S1E) from the

perspective of the PCA-based transformation trajectory (Figures

1E and S1F). Overall, we observed that (1) AR mRNA expression

is lost during progression toward late-stage tumors, (2) FOXA1, a

known transcription factor of SCNPC,14,15 is shown to emerge at

theearly-transitionstage,and (3)well-knownneuroendocrine tran-

scription factors such as ASCL1, NEUROD1, ONECUT2, SOX2,

INSM1, and FOXA2were increased toward the late stage (Figures

2E and S2D).43–45 This analysis also revealed additional candidate

stage-specific transcription factors that are largely understudied in

SCNPC, such as LTF, ESR1, ZIC2, and TBX10 (Figure 2E).ASCL1

and ASCL2 expression were elevated in the late tumor stages

(Figures 1C, 2E, and 2F). Notably, their expression was enriched

in separate tumor endpoints (HC5: ASCL2+ and HC6: ASCL1+),

supporting their probable contribution to the bifurcated trajec-

tories (Figures 2E, 2F, and S2D).

Transcription factor-defined cell populations contribute
to lineage divergence and tumor heterogeneity
To determine the degree of heterogeneity within the time

course tumors, we performed single cell RNA sequencing on
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four time-defined serial tumor sets: P2, P5, P7, and P8 (TP3–TP6)

(Figure 3A). Dimension reduction analysis (Uniform Manifold

Approximation and Projection, UMAP) was used to visualize

the overall distribution of cell populations at each time point of

SCNPC development (Figures 3A, 3B, and S3A). Overall, a line-

age differentiation from basal (KRT5+) to luminal (KRT18+) was

observed from early to late tumors (Figures 3B and 3C). YAP1,

whose expression defines a non-neuroendocrine SCLC sub-

type46 and whose high expression is frequently seen in CRPC-

PRAD but not SCNPC,47 is enriched in the early tumor cell

populations (Figures 3B and 3C).

To understand the association of known SCN transcription

factors in contributing to intra-tumoral heterogeneity, we first as-

signed an SCNPC score33 to each cell (Figure S3B). Despite the

high SCNPC scores across populations of single cells, the num-

ber of NEUROD1 and/or ONECUT2 positive cells is very low,

while deeper single cell sequencing depth would be required

to fully investigate this result (Figures 3C and S3B). Other well-

known neuroendocrine transcription factors such as ASCL1,

INSM1, and FOXA2 are enriched in the same cell cluster with

high SCNPC score (Figures 3C and S3B). However, in another

cell cluster, ASCL2, POU2F3 and SOX9 were co-expressed

with a medium level of SCNPC score (Figures 3C and S3B).

The general mutual exclusivity of ASCL1 and ASCL2 in single

cells further supports ASCL1 and ASCL2 contributing to the

bifurcated endpoint trajectories observed in the bulk tumors

(Figures 3C, S3C, and S3D).

Single cell datasets available as reference from longitudinal

clinical samples in advanced prostate cancer are rare, thus a

cell type inference analysis using reference pure cell types was

applied to infer the identity of individual cells in PARCB tumors.48

Five out of a total of 36 reference cell types from the Human

Primary Cell Database were highly enriched in the PARCB

time course tumor samples (Figure 3D). All tumor cells share a

similar transcriptome as epithelial cells (Figure 3D). Particularly,

a majority of tumor cells (other than early stage cells) exhibit

stem-like gene expression patterns reflective of embryonic

stem cells and induced pluripotent stem cells, indicative of a

de-differentiation shift during SCNPC development and trans-

differentiation (Figure 3D). Additionally, later-stage cells ex-

pressing either ASCL1 or ASCL2 had neuronal-like gene expres-

sion profiles, confirming the emergence of SCN differentiation

(Figures 3B–3D).

Single cell analysis supports the overall gene expression and

chromatin accessibility patterns observed in bulk tumors. Pro-

jection of single cells onto the PCA framework generated from

bulk RNA-sequencing samples (Figures 1E and S1F) demon-

strated that tumors clustering distinctly by bulk RNA-sequencing

indeed consist primarily of single cells in the corresponding

different transcriptional states, with some degree of heterogene-
(C) Expression of selected markers and transcription factors. KRT5 marks basal c

counts.

(D) Top enriched inferred cell types from the Human Cell Type Database using S

(E) Projection of single cell RNA-sequencing samples on PCA framework by bulk

and transcription factors (bottom panel). Each data point is a single cell colored

(F) Expression of ASCL1 (top) and ASCL2 (middle) and percentage of ASCL1/2 pos

model tumors from five single cell RNA-sequencing datasets.31,49–51 Other: pros

RB_M: Ptenf/f; Rb1f/f (PR) mouse model in Brady et al.31 See also Figure S3.
ity (Figure 3E). Furthermore, transcription factors with high

expression in tumors defined by bulk RNA-sequencing analysis

(Figure 2E) show heterogeneous patterns among single cells

(Figure S3E). Tumors at transitional stage (HC4) and late stage

(HC5) have the highest degree of gene fluctuation, further high-

lighting a potential role for increased intratumoral heterogeneity

during the trans-differentiation process (Figure S3E). Impor-

tantly, we further validated the mutually exclusive expression

pattern of ASCL1 and ASCL2 in multiple clinical and GEMM

single cell RNA-sequencing datasets.31,49–51 This analysis

confirmed that ASCL2 is generally enriched in non-NE cells/

adenocarcinoma and ASCL1 is more abundant in high NE

cells/SCNPC clinically (Figure 3F), consistent with the PARCB

temporal study (Figure S3F). ASCL1 and ASCL2 double-positive

cells are observed at a low frequency, primarily in SCNPC

tumors, andmay reflect a transitional state between adenocarci-

noma and SCN phenotypes (Figure 3F).

ASCL1 and ASCL2 specify independent transcriptional
programs and sub-lineages in SCNPC
Given that ASCL1 and ASCL2 expression levels are mutually

exclusive in single cells, we asked whether ASCL1 and ASCL2

represent separate cellular sub-lineages by inferred clonal

tracing analyses.52 With KRT5 (basal marker) set as the begin-

ning of the tracing, the inferred tracing results in three primary

lineage branches/states (Figure 4A). As hypothesized, single

cells expressing either ASCL1 or ASCL2 are enriched in different

lineage branches (Figures 4A and 4B). This result is further sup-

ported by a different analytic tool (RNA velocity) that measures

the temporal ratio of un-spliced to splicedmRNAs to infer lineage

trajectory53 (Figure S4A). The inferred clonal tracing results com-

plemented the real-time-based analysis visualized as the total

composition of ASCL1- or ASCL2-positive, double-positive

and negative populations over time (Figure 4C), supporting that

ASCL1 and ASCL2 are associated with independent sub-line-

ages. Double-positive cells are very infrequent in the PARCB

temporal tumors. The double-positive population observed in

the P2-TP5 tumor may capture the cells undergoing the transi-

tional state (Figure 4C), and the overall low double-positive fre-

quency is consistent with the clinical aforementioned results

(Figure 3F).

To further characterize the transcriptional difference between

cells expressing a high level of ASCL1 or ASCL2, we analyzed

their differential gene expression profiles (Figure 4D; Table

S1F). Genes that are involved in synaptic and neuroendocrine

regulation such as DDC, CACNA1A, and INSM1 are enriched

in ASCL1+ cells. ASCL2+ cells express genes with stem-like

characteristics such as SOX9 and POU2F3 (Figure 4D). SOX9

is directly regulated by ASCL2 in intestinal stem cells,29 suggest-

ing a possible contribution to stem-like properties in SCNPC
ells. KRT15 marks luminal cells. The expression is presented in log normalized

ingleR.48

RNA-sequencing samples (top panel) and the expression of selected markers

by their corresponding HC.

itive cells (cells with expression value > 0) (bottom) in human biopsy andGEMM

tatic intraepithelial neoplasia. NMYC_RB_M: Ptenf/f; Rb1f/f;MYCN + (PRN) and
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Figure 4. ASCL1 and ASCL2 specify independent transcriptional programs and sub-lineages in SCNPC

(A) Inferred clonal tracing analysis of the PARCB time course samples using Monocle 2.52

(B) Relative expression of KRT5, ASCL1, and ASCL2 in the inferred clonal tracing analysis (pseudo-time).

(legend continued on next page)
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trans-differentiation. Upon further investigation, we observed

that genes implicated in the intestinal stem cell program such

as EPBH3 and TNFRSF929 are positively correlated with

ASCL2, but not ASCL1 (Figure S4B). In contrast, a well-known

intestinal stem cell marker, LGR5,54 has no correlation with either

ASCL1 orASCL2, consistent with it having amore tissue specific

intestinal role (Figure S4B).

To identify the transcriptional programs that are associated

with either ASCL1 or ASCL2 in prostate cancer, we constructed

an inferred network55 using multiple bulk RNA sequencing pros-

tate cancer and model datasets including The Cancer Genome

Atlas (TCGA), additional patient tumor (Beltran), and SCNPC

model (Park) datasets.6,33 The analysis identified 336 and 352

genes regulated independently by ASCL1 or ASCL2 (Figure 4E;

Table S1G). Strikingly, there are only 5 genes from the inference

analysis that are regulated by both factors: TMEM74, RGS16,

LHFPL4, CDCA7L, and SOX2 (Figure 4E). This result is consis-

tent with the demonstrated role of SOX2 in regulating neuroen-

docrine differentiation in null TP53 and RB1 backgrounds,13

hence showing that SOX2 is involved in both ASCL1 and

ASCL2 associated neuroendocrine sub-lineages. Genes that

are regulated by ASCL1 are enriched in neuroendocrine differen-

tiation markers and factors such as SYP, CHGA, NCAM1, and

NEUROD1 (Figure 4E). ASCL2 is associated with genes

including PTGS1/COX1, POU2F3, ANXA1 which are generally

immune and stress responsive, and stem-like (Figures 4D and

4E). We further confirmed that PARCB tumor-derived cell lines

from different tissues of origin (prostate, bladder, and lung) all

have only one or the other gene expression pattern associated

with either ASCL1 or ASCL2 expression (Figures 4F and S4C).

We next validated the predicted transcriptional programs of

ASCL1 and ASCL2 by exogenously expressing either ASCL1

or ASCL2 in ASCL2+ or ASCL1+ cell lines, respectively.

ASCL1 exogenous expression in ASCL2+ cells, increased the

ASCL1 transcriptional program as indicated by increased signa-

ture score (Figure S4D). However, ASCL2 exogenous expression

in ASCL1+ cells, did not have notable effect, suggesting that the

ASCL1 endpoint state has higher stability (Figure S4D).

In situ hybridization of ASCL1 and ASCL2mRNA in the transi-

tional PARCB tumor samples further confirmed the mutually

exclusive expression pattern (Figure 4G). The staining patterns

demonstrated both ASCL1 and ASCL2 mixed populations (left,

Figure 4G), as well as patch regions potentially resulting from

local clonal expansion (right, Figure 4G) of ASCL1+ or ASCL2+

cells. Our combined results support that ASCL1 and ASCL2

define independent cellular sub-lineages and transcriptional pro-

gramswith stem-like and neuroendocrine enrichment in SCNPC.

ASCL1 and ASCL2 as pan-cancer classifiers
Clinical subtypes are fairly well-defined in SCLC,46,56 but molec-

ular subtyping remains an evolving challenge in SCNPC.8 By per-
(C) Percentages of ASCL1 or ASCL2 positive, double-positive and double-negat

(D) Volcano plot of differential gene expression in high ASCL1+ vs. high ASCL2+

(E) Representative genes from the predicted transcriptional programs of ASCL1 a

(including TCGA), as determined by the ARACNE algorithm.81

(F) Western blot of panel of genes in the PARCB tumor derived cell lines from di

(G) Representative images of in situ hybridization of ASCL1 and ASCL2 mRNA an

Figure S4.
forming projection analysis of our samples onto a gene expres-

sion or chromatin accessibility PCA framework defined by the

Tang et al. dataset of patient metastatic CRPC phenotypes,57

we found that PARCB temporal samples share similar transcrip-

tome and epigenome signatures, including a shared stem-cell

like (SCL) group and a shared NEPC group (Figure 5A).

Given the high degrees of similarity in transcriptional profiles of

SCLC and SCNPC,4 we compared our HC classification of the

PARCB time course samples to the SCLC clinical subtypes:

ASCL1 (A), NEUROD1 (N), POU2F3 (P), and YAP1 (Y) (Fig-

ure 5B).32,46 The class I/ASCL2+ (HC5) tumor group shares tran-

scriptome similarity with SCLC-P (Figure 5B), which is consistent

with the co-expression pattern of ASCL2 and POU2F3 observed

in multiple analyses (Figures 3C and 4D). Likewise, and concor-

dant, the Class II/ASCL1+ (HC6) tumor group is transcriptionally

aligned to SCLC-A (Figure 5B).

To investigate whether the ASCL1 and ASCL2 sub-classes

from PARCB temporal study recapitulate patterns observed in

clinical samples of prostate cancer, we compared ASCL1 and

ASCL2 expression in PARCB temporal samples versus

numerous clinical profiling datasets.10,33–36 The results demon-

strate that the expression levels of ASCL1 and ASCL2 are

comparable between the PARCB model and clinical samples,

and the transcriptional patterns of HC1 to HC6 generally co-

rresponded with the transition from PRAD/CRPC-PRAD to

SCNPC (Figure 5C). We further confirmed the general mutual

exclusivity and low double positivity of ASCL1/2 expression us-

ing an RNA in situ hybridization assay on both CRPC-PRAD and

SCNPC clinical samples and CRPC PDX models (Figures 5D,

S5A, and S5B).

By comparing the expression levels of ASCL1 and ASCL2

across a broad panel of pan-cancer cell lines, we found that

almost all cancers, apart from lung cancers, can be divided

into three categories: (1) demonstrating expression of ASCL1

(neuroblastoma), (2) of ASCL2 (colorectal and breast cancers),

and (3) double-negative (other cancers) (Figure 5E). Only

SCLC and other lung cancer cell lines have mixed levels of

ASCL1 and ASCL2. Combined with our results, this suggests

a potential role for ASCL2 and POU2F3 in specifying intermedi-

ate, and/or heterogeneous states in (small cell) lung cancer (Fig-

ure 5E). Protein expression analysis in lung squamous carci-

noma (NCI-H1385), SCLC-A (NCI-H1930, NCI-H146, and

DMS79), SCLC-P (NCI-H526 and COR-L311), and SCNPC

(NCI-H660) cell lines further highlighted a mutually exclusive

pattern of ASCL1 and ASCL2 (Figure S5C). SCLC-N (NCI-

H1694) is double-negative for ASCL1 and ASCL2 and positive

for NEUROD1 as expected (Figure S5C). Last but not the least,

in patient tumor pan-cancer data, the exclusive expression of

either ASCL1 or ASCL2 is again observed, highlighting that bi-

nary distinctions defined by ASCL1 and ASCL2 occur across

multiple tissue types (Figure 5F). In sum, an inverse and
ive cell populations over time.

cell populations.

nd ASCL2 trained on data from patient andmodel prostate cancer tumors6,10,33

fferent tissue of origin (prostate, bladder, and lung).6,7

alysis on transitional tumors (P7-TP5 and P9-TP4). Scale bar: 20 mm. See also
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Figure 5. ASCL1 and ASCL2 as pan-cancer classifiers
(A) Projection of the PARCB time course samples on the PCA framework defined by the CRPC subtypes using RNA sequencing (left) and ATAC-sequencing

(right).57 SCL: stem-cell like. NEPC: neuroendocrine prostate cancer. 3-dimensional rotatable versions of these figures are available on the PARCB Multi-omics

Explorer website. [For review, 3D rotatable versions are included as Data S2 and S3.].

(B) Projection of the PARCB time course samples on the PCA framework defined by the SCLC subtypes.32,46

(C) mRNA expression of ASCL1 and ASCL2 in the PARCB time course samples and multiple sets of clinical CRPC-PRAD and SCNPC samples including TCGA

and different research groups.10,33–36

(D) Representative images of in situ RNA hybridization of ASCL1 and ASCL2 in clinical SCNPC tissues. Scale bar: 20mm.

(E) mRNA expression of ASCL1 and ASCL2 in pan cancer cell lines (CCLE).

(F) mRNA expression of ASCL1 and ASCL2 in pan cancer tumors from TCGA.

See also Figure S5.
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generally mutually exclusive relationship between ASCL1 and

ASCL2 is observed in multiple and pan-cancer contexts, and

mutual exclusivity is strongly observed at the single cell level.

Alternating ASCL1 and ASCL2 expression through
reciprocal interaction and TFAP4 epigenetic regulation
With the evidence that ASCL1 or ASCL2 expression levels are

mutually exclusive in single cells during SCNPC trans-differenti-

ation, we explored two hypotheses: (1) These two factors mutu-

ally regulate each other’s expression, or (2) they share a common

upstream transcription factor that alternates their transcription

through regulated differential binding to respective gene regula-

tory elements. To test the first hypothesis, we expressed V5-

tagged ASCL2 in multiple PARCB tumor derived cell lines (lung

and prostate) and observed that ASCL1 protein expression

was significantly suppressed in these cells (Figure 6A). In

contrast, expression of V5-tagged ASCL1 increased ASCL2 ex-

pressions both at protein andmRNA levels (Figures 6A and S6A).

Thus in our model cells, ASCL1 and ASCL2 mutually regulate

each other at the protein level, but each in the opposite manner.

To test the second hypothesis of a common regulator, known

promoter and enhancer regions of ASCL1 and ASCL2 were first

annotated in the PARCB time course ATAC-sequencing data

(Figure 6B). An opposing pattern of open and closed chromatin

formation is found on both the ASCL1 promoter and the

ASCL2 enhancer regions (Figure 6B). A rank list of transcription

factors that have matching motifs in the regions was generated

to determine potential shared regulators58 (Figure 6C; Table

S1H). An extensive literature search of all the factors whose mo-

tifs were found in both ASCL1 and ASCL2 regulatory regions

revealed that TFAP4 was reported to form different transcription

complex to either activate or repress target genes, including

facilitating epithelial-to-mesenchymal transition in colorectal

cancer and repressing neuronal programs in non-neuronal

cells.59,60 The TFAP4 motif was shared in both the ASCL1 pro-

moter (ranked 2nd) and the ASCL2 enhancer region (ranked 6th)

in the top 8 list of shared transcription factor motifs (Figure 6C),

and is expressed across all the SCLC, SCNPC and PARCB tu-

mor derived cell lines tested (Figures S5C and S6B). Interest-

ingly, NCI-H1385, a lung squamous carcinoma (non-small cell)

cell line, has lower TFAP4 expression compared to other SCN

cell lines (Figure S5C).

The direct differential binding of TFAP4 to the ASCL1 promoter

and the ASCL2 enhancer region was confirmed by the CUT&RUN

technique,61 a chromatin immunoprecipitation experiment using

TFAP4 antibody in both ASCL1+ and ASCL2+ PARCB tumor

derived cell lines. Despite cell lines having various degrees of

TFAP4 binding signals due to potential mixed cell clones within

the cell lines, TFAP4 was found to have higher binding affinity

near the ASCL1 promoter in ASCL1+ cell lines (P7-TP6) than

ASCL2+ cell lines (P2-TP6 and T3-TP5) (Figure S6C). In contrast,

TFAP4 consistently bound toASCL2 enhancer regions in ASCL2+

cell lines compared to ASCL1+ cell line (Figure S6C). This result

supports that TFAP4 potentially regulates transcription of

ASCL1 and ASCL2 in a context-specific manner.

To determine whether TFAP4 directly regulates the expres-

sion of ASCL1 and ASCL2, we introduced a doxycycline-induc-

ible CRISPR sgRNA targeting TFAP4 in multiple ASCL1+ and

ASCL2+ cell lines, including PARCB tumor-derived cell lines
and the patient-derived cell line NCI-H660. Both ASCL1 and

ASCL2 expression decreased, with various strength, after

TFAP4 knockout was induced by the addition of doxycycline

in the respective cell lines (Figures 6F and S6D). However, other

lineage associated proteins did not change (Figures 6F and

S6D). Cell growth assays showed a mild decrease in P7-TP6

(ASCL1+) cell growth, and in contrast a drastic increase in

P3-TP5 (ASCL2+) growth upon the knockout of TFAP4 (Fig-

ure 6E). To explore the clinical relevance of TFAP4 in cancer

and SCNPC, we surveyed the expression of TFAP4 across sub-

types of cancers compared to normal tissue. There is a sub-

stantial increase in TFAP4 expression in small cell cancers

compared to adenocarcinoma, and compared to normal tissue,

in both prostate and lung cancer indications (Figure 6F), as well

as in pan cancer tumors (TCGA) vs. normal tissue (GTEx)

(Figure S6E).

Thus in our transcriptional regulatory circuit studies, we found

a reciprocal, non-symmetric regulatory relationship between

ASCL1 and ASCL2; and that within this circuit, ASCL1 and

ASCL2 have a shared positive regulatory factor, TFAP4. In the

sum of our studies, the PARCB model provided a blueprint of

SCNPC trans-differentiation as specified by temporal transcrip-

tion factors (Figure 6G). In particular, ASCL1 and ASCL2 define

distinct bifurcated sub-lineage trans-differentiation trajectories

in small cell cancers, and binary transcriptional profiles in a

pan-cancer context.

DISCUSSION

SCNPC has a rare de novo presentation, however, trans-differ-

entiation from PRAD to SCNPC is a frequent adverse conse-

quence of cancer cells acquiring resistance to therapeutics

repressing AR signaling.8,9 In a pan-cancer context, therapy-

induced trans-differentiation from adenocarcinoma to SCN

cancer is a growing clinical challenge in lung cancer with the

expansion of effective targeted therapies, such as EGFR, ALK,

BRAF, KRAS inhibitors.62 Genetically engineered mouse models

of SCNPC and SCLC have been generated to provide insight into

the tumorigenesis of SCN cancers,12,18,31,43,63,64 with some

models demonstrating evidence of the adenocarcinoma to

SCN cancer transition.13,31,65,66 Patient tumor-derived organo-

ids and circulating tumor cells have also provided models for

monitoring differentiation state transitions,50,67 including rever-

sion to non-SCN states via specific signaling inhibition.50 Our

PARCB froward genetics in vivo temporal transformation model

further adds to these resources by being human cell-based,

recapitulating the adenocarcinoma to SCN phenotype trans-

differentiation at both the histological and molecular signature

levels, and providing the temporal resolution to reveal an arc-

like plasticity trajectory and associated stem cell-like (reprog-

rammed) intermediate states. A limitation of the PARCB model

is that inhibition of the AR axis is not an initiating component of

the trans-differentiation process.

Such an arc-like trajectory is commonly observed in unbiased

profiling of development and differentiation processes, including

in cancer contexts.39,68–74 The pattern is reminiscent of temporal

regulation in development, with the differentiation transition

stage promoted by temporally regulated epigenetic and tran-

scriptomic plasticity programs.75–77
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Figure 6. Alternating ASCL1 and ASCL2 expression through reciprocal interaction and TFAP4 epigenetic regulation

(A) Western blot analysis of exogenously expressing either V5 tagged ASCL2 in ASCL1+ cell lines6 (left) or V5-tagged ASCL1 in ASCL2+ cell lines (right).

(B) Schematic of putative cis regulatory elements (CREs) of ASCL1 and ASCL2 (top) and the heatmap of open chromatin accessibility across CREs of ASCL1 and

ASCL2 using the PARCB time course ATAC-sequencing (bottom). Red box: CREs containing predicted TFAP4 binding sites by HOMER motif enrichment

analysis.58

(C) Top 8 ranked transcription factor motifs in ASCL1 promoter and ASCL2 enhancer regions, ranked by p values.

(D) Western blot analysis of doxycycline-inducible knockout of TFAP4 and proteins of interest in P7-TP6 (ASCL1+) and P3-TP5 (ASCL2+) cell lines. DOX:

doxycycline.

(E) Cell proliferation analysis of P7-TP6 (ASCL1+) and P3-TP5 (ASCL2+) cell lines with doxycycline-inducible knockout of TFAP4. Ctrl: no addition of doxycycline.

TFAP4: with addition of doxycycline. Error bars show mean ± SD.

(F) TFAP4 expression in prostate and lung cancer datasets10,32,33 (including TCGA).

(G) Schematic summary of the PARCB time course study. See also Figure S6.

ll
OPEN ACCESS Article

12 Cancer Cell 41, 1–17, December 11, 2023

Please cite this article in press as: Chen et al., Temporal evolution reveals bifurcated lineages in aggressive neuroendocrine small cell prostate cancer
trans-differentiation, Cancer Cell (2023), https://doi.org/10.1016/j.ccell.2023.10.009



ll
OPEN ACCESSArticle

Please cite this article in press as: Chen et al., Temporal evolution reveals bifurcated lineages in aggressive neuroendocrine small cell prostate cancer
trans-differentiation, Cancer Cell (2023), https://doi.org/10.1016/j.ccell.2023.10.009
The transcription profiles of the transition stage from adeno-

carcinoma to SCNPC provide evidence for an initial de-differen-

tiation or reprogramming step when cells enter the trans-

differentiation process, with enrichment of stem cell and iPSC

programs. Furthermore, we find samples in the transitional state

have a higher degree of entropy at both the epigenetic and gene

expression level. Our findings are in concordance with a recent

study in an adenocarcinoma lung cancer mouse model where

a highly plastic intermediate state was seen as cells transitioned

from lung hyperplasia to adenocarcinoma,19 and with past

observations of increased entropy proceeding differentiation

processes.39 Together these findings support the idea that de-

differentiation, and epigenetic loosening and/or cellular hetero-

geneity are prerequisites for further lineage trans-differentiation

during cancer evolution.

At the end-stages, the trans-differentiation trajectory demon-

strates a bifurcation, resulting in two neuroendocrine states,

one characterized by ASCL2 and POU2F3 expression (Class I

tumors), the other by ASCL1 expression (Class II tumors).

Throughout the trans-differentiation trajectory, individual cells

demonstrate mutually exclusive expression of either ASCL1 or

ASCL2, with emergence of ASCL2 generally earlier and more

prominent than ASCL1. Thus, the ASCL2 state and double-pos-

itive state may reflect a semi-stable and transitional state. The

molecular switch from ASCL2 to ASCL1 demonstrates the dy-

namic transcriptional control in SCNPC. An analogous temporal

shift from FOXA1 to FOXA2 orchestrated transcriptional pro-

grams was observed in an independent SCNPC temporal

GEMMmodel,43 and the FOXA1 to FOXA2 transition is reflected

in the PARCB model (Figure S2D).

SCLC tumor subtypes are canonically defined by the predom-

inant expression of one of four master regulators (ASCL1,

NEUROD1, POU2F3, and YAP1),46 and tumors expressing

ASCL1 have been reported in therapy induced SCNPC.5,51

Nevertheless, single cell data from mouse models of SCNPC

have identified both a distinct cell subpopulation with co-expres-

sion and open chromatin accessibility of ASCL2 and POU2F3

motifs,31 and a POU2F3 expression-dominant cell subpopula-

tion.50 Upon close examination of clinical prostate cancer

expression datasets,31,49–51 and upon performing RNA hybridi-

zation studies of prostate tumor histology sections, we found

that ASCL2+ cells are common in castration-resistant and ther-

apy-exposed prostate cancers. Thus, the previous reports com-

bined with our findings support a potential cancer physiology

role for the ASCL2/POU2F3 subtype in prostate cancer trans-dif-

ferentiation. In parallel, NEUROD1, a marker of a previously

defined prostate (and SCLC) cancer subtype5,46 has relatively

low expression in the PARCB temporal study. However, a NEU-

ROD1-expressing cell cluster is situated between the ASCL1

and ASCL2 cell clusters in the lineage analysis, suggesting a

potential facilitating role in lineage bifurcation and trans-

differentiation.

Prior links between master regulators POU2F3 and ASCL2

have previously been reported, such as a unique dependency

on ASCL2 in the POU2F3 subtype of SCLC cell lines.78 Whether

ASCL2 and POU2F3 regulate highly overlapping transcriptional

targets remains to be determined. One potential mechanism is

through the co-activation of E-box and octamer DNA binding

by ASCL2 and POU2F3, respectively. This interaction mecha-
nism was observed previously between ASCL1 and POU3F2

(BRN2) in neurogenesis.79 Further work will help answer if

ASCL2 facilitates the transitional stage and/or is a more default

program during the de-differentiated transition stage.

Despite sharing similar nomenclature and pro-neuronal prop-

erties in the literature,20 ASCL1 and ASCL2 are known to play

different roles in stem cell, lineage differentiation, and cancer

biology.22,29 ASCL1 is a prominent driver for neuroendocrine dif-

ferentiation in normal cells.22 However, recent cancer studies

have shown that ASCL1 contributes to high lineage plasticity, re-

sulting in subtype changes via remodeling of the global epige-

netic state.18,24 The role of ASCL2 requires further investigation

to determine its balance of compensatory and competitive char-

acteristics in regard to ASCL1 function in SCN cancers. In our

mechanistic studies, we found that increased ASCL1 leads to

increased ASCL2 expression, whereas ASCL2 suppresses

ASCL1 expression using PARCB tumor-derived cell lines from

multiple tissues of origin (prostate and lung). This leads to a

future testable hypothesis on whether existence or absence of

ASCL2 is required to arrive at an ASCL1-positive neuroendo-

crine state via trans-differentiation.

A dynamic lineage plasticity among subtypes of SCLC has

been reported.18 However, the triggers and mechanisms under-

lying cancer cells switching to different lineages remain elusive.

In SCNPC, beyond our discovery of the reciprocal regulation be-

tween ASCL1 and ASCL2, our results identified TFAP4 as an

additional candidate member of this transcriptional circuitry. In

particular, TFAP4 can alternate the expression of ASCL1 and

ASCL2 by differential binding to cis regulatory elements on

both genes. TFAP4 has been shown to have both activating

and repressing properties in gene regulation through interactions

with distinct transcription factors.59,60 TFAP4 demonstrates sub-

stantial increased expression in small cell vs. non-small cell can-

cers and is elevated in cancers compared to normal tissue.

Future mechanistic and functional studies on TFAP4 will help

clarify its master regulator role in lineage trans-differentiation in

SCNPC and SCLC.

In clinical therapy, different forms of tumor plasticity define the

battle grounds for acquired resistance. In the primary prostate

cancer setting, the vast majority of prostate cancers are adeno-

carcinomaswhile all other histologic types are rare. In the castra-

tion-resistant setting, especially with the clinical introduction of

next-generation anti-AR therapies, many different variant histol-

ogy has been observed, including rare cases of squamous

carcinoma.80 In this combat, trans-differentiation to a SCN state

in response to otherwise effective molecular therapies is an

emerging challenge across multiple cancer types. The temporal

profiling of SCNPC development in the human cell based

PARCBmodel revealed that trans-differentiation from an adeno-

carcinoma to neuroendocrine state is a temporally complicated,

yet systematically coordinated process. The combination of bulk

and single cell profiling approaches allowed for the identification

of an arc-like trajectory and a transitory period characterized by

epigenetic loosening, which are shared in general by other differ-

entiation and development processes. Consistent with geneti-

cally engineered mouse SCNPC models, and with the multiple

subtypes of SCLC, we find a role for both ASCL1 and ASCL2/

POU2F3 in trans-differentiation to SCNPC. The results from

our model have provided insight into the regulatory crosstalk
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between different neuroendocrinemaster regulators and provide

a resource for identifying candidate approaches for blocking this

clinically challenging case of trans-differentiation.
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59. Jackstadt, R., Röh, S., Neumann, J., Jung, P., Hoffmann, R., Horst, D.,

Berens, C., Bornkamm, G.W., Kirchner, T., Menssen, A., and

Hermeking, H. (2013). AP4 is a mediator of epithelial-mesenchymal transi-

tion and metastasis in colorectal cancer. J. Exp. Med. 210, 1331–1350.

60. Kim, M.Y., Jeong, B.C., Lee, J.H., Kee, H.J., Kook, H., Kim, N.S., Kim,

Y.H., Kim, J.K., Ahn, K.Y., and Kim, K.K. (2006). A repressor complex,

AP4 transcription factor and geminin, negatively regulates expression of

target genes in nonneuronal cells. Proc. Natl. Acad. Sci. USA 103,

13074–13079.

61. Skene, P.J., Henikoff, J.G., and Henikoff, S. (2018). Targeted in situ

genome-wide profiling with high efficiency for low cell numbers. Nat.

Protoc. 13, 1006–1019.

62. Rudin, C.M., Brambilla, E., Faivre-Finn, C., and Sage, J. (2021). Small-cell

lung cancer. Nat. Rev. Dis. Prim. 7, 3.

63. Schaffer, B.E., Park, K.S., Yiu, G., Conklin, J.F., Lin, C., Burkhart, D.L.,

Karnezis, A.N., Sweet-Cordero, E.A., and Sage, J. (2010). Loss of p130 ac-

celerates tumor development in a mouse model for human small-cell lung

carcinoma. Cancer Res. 70, 3877–3883.

64. Jia, D., Augert, A., Kim, D.W., Eastwood, E., Wu, N., Ibrahim, A.H., Kim,

K.B., Dunn, C.T., Pillai, S.P.S., Gazdar, A.F., et al. (2018). Crebbp Loss

Drives Small Cell Lung Cancer and Increases Sensitivity to HDAC

Inhibition. Cancer Discov. 8, 1422–1437.

65. Bishop, J.L., Thaper, D., Vahid, S., Davies, A., Ketola, K., Kuruma, H.,

Jama, R., Nip, K.M., Angeles, A., Johnson, F., et al. (2017). The Master

Neural Transcription Factor BRN2 Is an Androgen Receptor-Suppressed

Driver of Neuroendocrine Differentiation in Prostate Cancer. Cancer

Discov. 7, 54–71.

66. Zou, M., Toivanen, R., Mitrofanova, A., Floch, N., Hayati, S., Sun, Y., Le

Magnen, C., Chester, D., Mostaghel, E.A., Califano, A., et al. (2017).

Transdifferentiation as a Mechanism of Treatment Resistance in a

Mouse Model of Castration-Resistant Prostate Cancer. Cancer Discov.

7, 736–749.

67. Faugeroux, V., Pailler, E., Oulhen, M., Deas, O., Brulle-Soumare, L.,

Hervieu, C., Marty, V., Alexandrova, K., Andree, K.C., Stoecklein, N.H.,

et al. (2020). Genetic characterization of a unique neuroendocrine transdif-

ferentiation prostate circulating tumor cell-derived eXplant model. Nat.

Commun. 11, 1884.

http://refhub.elsevier.com/S1535-6108(23)00365-3/sref35
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref35
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref36
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref36
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref36
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref36
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref36
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref37
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref37
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref37
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref38
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref38
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref38
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref38
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref39
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref39
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref39
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref39
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref39
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref40
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref40
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref41
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref41
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref41
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref42
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref42
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref42
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref42
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref43
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref43
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref43
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref43
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref44
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref44
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref44
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref45
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref45
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref45
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref46
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref46
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref46
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref46
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref47
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref47
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref47
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref47
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref47
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref48
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref48
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref48
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref48
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref49
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref49
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref49
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref49
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref50
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref50
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref50
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref50
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref51
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref51
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref51
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref51
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref52
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref52
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref52
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref53
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref53
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref53
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref54
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref54
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref54
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref54
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref55
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref55
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref55
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref55
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref55
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref56
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref56
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref56
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref56
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref56
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref57
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref57
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref57
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref57
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref58
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref58
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref58
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref58
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref59
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref59
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref59
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref59
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref60
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref60
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref60
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref60
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref60
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref61
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref61
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref61
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref62
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref62
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref63
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref63
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref63
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref63
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref64
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref64
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref64
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref64
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref65
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref65
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref65
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref65
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref65
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref66
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref66
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref66
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref66
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref66
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref67
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref67
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref67
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref67
http://refhub.elsevier.com/S1535-6108(23)00365-3/sref67


ll
OPEN ACCESSArticle

Please cite this article in press as: Chen et al., Temporal evolution reveals bifurcated lineages in aggressive neuroendocrine small cell prostate cancer
trans-differentiation, Cancer Cell (2023), https://doi.org/10.1016/j.ccell.2023.10.009
68. Tsoi, J., Robert, L., Paraiso, K., Galvan, C., Sheu, K.M., Lay, J., Wong,

D.J.L., Atefi, M., Shirazi, R., Wang, X., et al. (2018). Multi-stage

Differentiation Defines Melanoma Subtypes with Differential Vulnerability

to Drug-Induced Iron-Dependent Oxidative Stress. Cancer Cell 33,

890–904.e5.
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PARCB-P2-TP6 This paper N/A

PARCB-P3-TP5 This paper N/A

PARCB-P7-TP6 This paper N/A

PARCB-P8-TP6 This paper N/A

Prostate-PARCB9 Park et al.6 N/A

Prostate-PARCB1 Park et al.6 N/A
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Experimental models: Organisms/strains

NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ

(NSG) mice

Jackson Laboratories RRID:IMSR_JAX:005557

Oligonucleotides

PUM1 F IDT 5’-ATGGACGGCGGCACAC-3’

PUM1 R IDT 5’-TCTCATTCTGCTGGTCTGAAGG-3’

ASCL1 F IDT 5’-CAAGCAAGTCAAGCGACAGC-3’

ASCL1 R IDT 5’-CTCATCTTCTTGTTGGCCGC-3’

ASCL2 F IDT 5’-ATGGACGGCGGCACAC-3’

ASCL2 R IDT 5’-CAAGTTCACCAGCTTCACGC-3’

Recombinant DNA

pLENTI6.3-V5-ASCL1 DNASU Cat#: HsCD00852286

pLenti6/V5-DEST Gateway Vector Thermo Fisher Cat# V496100

pDONR221-ASCL2 DNASU Cat# HsCD00829357

TLCv2 Addgene Cat# 87360

Software and algorithms

DESeq2 (v1.34.0) Love et al.88 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

HOMER (v4.11) Heinz et al.58 http://homer.ucsd.edu/homer/

download.html

GimmeMotifs (v0.17.0) van Heeringen and Veenstra41 https://gimmemotifs.readthedocs.io/

en/master/index.html#

EnrichR (v3.1) Kuleshov et al.89 https://cran.r-project.org/web/

packages/enrichR/index.html

WiggleTools (v1.2) Zerbino et al.92 https://github.com/Ensembl/

WiggleTools

deepTools (v3.5.1) https://deeptools.readthedocs.io/

en/develop/index.html

DescTools (v0.99.47) https://cran.r-project.org/web/

packages/DescTools/index.html

Seurat (v3.2.3) Stuart and Butler et al.94 https://satijalab.org/seurat/

singleR (v1.8.1) Aran et al.48 https://bioconductor.org/packages/

release/bioc/html/SingleR.html

Monocle 2 (v3.12) Qiu, Hill, Trapnell et al.52 http://cole-trapnell-lab.github.io/

monocle-release/

scVelo (v0.2.3) Bergen et al.53 https://scvelo.readthedocs.io/

en/stable/

ARACNe-AP Lachmann et al.81

Margolin et al.55
https://github.com/califano-

lab/ARACNe-AP

fgsea (1.20.0) Bioconductor https://bioconductor.org/packages/

release/bioc/html/fgsea.html

TOIL (v3.12.0) Vivian et al.87 https://toil.ucsc-cgl.org/

ENCODE ATAC-seq pipeline ENCODE https://github.com/ENCODE-DCC/

atac-seq-pipeline

ENCODE Transcription Factor and Histone

ChIP-Seq processing pipeline

ENCODE https://github.com/ENCODE-DCC/

chip-seq-pipeline2

CellRanger (v4.0.0) 10x Genomics https://support.10xgenomics.com/

single-cell-gene-expression/software/

pipelines/latest/using/tutorial_ct

ggplot2 (v3.3.6) https://cran.r-project.org/web/

packages/ggplot2/index.html
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GSVA (v1.42.0) Bioconductor https://bioconductor.org/packages/

release/bioc/html/GSVA.html#:�:

text=Gene%20Set%20Variation%20

Analysis%20(GSVA,of%20a%20

expression%20data%20set.

Stats (v3.6.2) https://stat.ethz.ch/R-manual/

R-devel/library/stats/html/00Index.html

pheatmap (v1.0.12) https://cran.r-project.org/web/

packages/pheatmap/pheatmap.pdf

limma (v3.50.3) Ritchie et al.91 https://bioconductor.org/packages/

release/bioc/html/limma.html

bedtools (v2.26.0) Quinlan and Hall90 https://bedtools.readthedocs.io/

en/latest/

Fiji (v2.14.0) Image J https://imagej.net/software/fiji/

StepOne Software (v2.3) Thermo Fisher https://www.thermofisher.com/

us/en/home/technical-resources/

software-downloads/StepOne-

and-StepOnePlus-Real-Time-

PCR-System.html
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Thomas

Graeber (TGraber@mednet.ucla.edu).

Material availability
All material generated in this study including plasmids and cell lines is available from the lead contact upon request with appropriate

material transfer agreements.

Date and code availability
d Bulk RNA-sequencing data, bulk ATAC-sequencing data, single cell RNA-sequencing data and ChIP-seq (CUT&RUN) data

have been deposited at dbGAP (phs003230.v1). In addition, the gene expression counts of Bulk RNA-sequencing and single

cell RNA-sequencing data have been deposited at GEO (GSE240058). Accession numbers are also listed in the key re-

sources table.

d This paper does not report any original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

PARCB transformation temporal model
Prostate tissues from donors were provided in a de-identified manner and therefore exempt from Institutional Review Board

(IRB) approval. Processing of human tissue, isolation of basal cells, organoid transformation, and xenograft assay were

described in detail previously.6 20,000 cells FACS-sorted cells per organoid were plated in 18-20ul of growth factor-reduced

Matrigel (Cat# 356234, Corning) with PARCB lentiviruses (MOI=50/lentivirus). Organoids were cultured in the prostate organoid

media82 for about 10-14 days. Transduced organoids were harvested by dissociation of Matrigel with 1mg/mL Dispase (Cat#

17105041, Thermo Fisher Scientific). The organoids were washed three times with 1xPBS to remove Dispase and re-suspended

in 10ml of growth factor reduced Matrigel and 10ul Matrigel with High Concentration (Cat# 354248, Corning). The organoid-Ma-

trigel mixture was implanted subcutaneously in immunodeficient NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice.83 Tumors

were extracted in every two-week window, with the last tumor collection of the time course series determined by either reaching

around 1cm in diameter in tumor size or ulceration, whichever came first. NSG mice had been transferred from the Jackson

Laboratories and housed and bred under the care of the Division of Laboratory Animal Medicine at the University of California,

Los Angeles (UCLA). All animal handling and subcutaneous injections were performed following the protocols approved by

UCLA’s Animal Research Committee.
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Cell lines
NCI-H1385 (Cat# CRL-5867), NCI-H1930 (Cat# CRL-5906), NCI-H1694 (Cat# CRL-5888), NCI-H146 (Cat# HTB-173), DMS79 (Cat#

CRL-2049), NCI-H526 (Cat# CRL-5811), and NCI-H660 (Cat# CRL-5813) were purchased from American Type Culture Collection

(ATCC). COR-L311 was obtained from Sigma Aldrich (Cat# 96020721). All commercially available cell lines were cultured and main-

tained based on the instruction from the vendors. PARCB tumor derived cell lines were generated using the previousmethod.6 All the

cell lines in the study are free of Mycoplasma using a MycoAlert� PLUS Mycoplasma Detection Kit (Cat# LT07-703, Lonza).

METHOD DETAILS

Lentiviral vectors and lentiviruses
The myristoylated AKT1 vector (FU-myrAKT1-CGW), exogenous expression of cMYC and BCL2 (FU-cMYC-P2A-BCL2-CRW),

dominant TP53 mutant (R175H) and shRNA targeting RB1 vector (FU-shRB1-TP53DN-CYW) have been described previously.6

Exogenous expression of V5 tagged ASCL1 (pLENTI6.3-V5-ASCL1) is obtained from DNASU (Cat#: HsCD00852286).84 For making

exogenous expression of ASCL2 containing vector (pLENTI6.3-V5-ASCL2), Gateway cloning (Cat# 11791020, Thermo Fisher) was

performed using pLenti6/V5-DEST Gateway Vector (Cat# V49610, Thermo Fisher) and the entry plasmid (pDONR221-ASCL2) was

obtained from DNASU (Cat# HsCD00829357).84 For making doxycycline- inducible sgTFAP4 (TLCv2-Cas9-BFP-sgTFAP4), TLCv2

(Cat# 87360, Addgene) was first digestedwith BamHI-HF (Cat# R3136, New England Biolabs) and Nhel-HF (Cat# 3131, New England

Biolabs) at 37�C for 1 hour and insertedwith a synthesized fragment containing T2A-Hpal-BFP sequence (gBlock service provided by

IDT) using Gibson Assembly (Cat# E5510, New England Biolabs). sgTFAP4 sequence was cloned into the previously described

TLCv2-BFP vector using an established protocol.85 sgTFAP4-primers are listed in the key resources table. Lentiviruses were pro-

duced and purified by a previously established method.86

Tissue section, histology, and immunohistochemistry (IHC)
PARCBmodel tumor tissueswere fixed in 10%buffered formaldehyde overnight at 4�Cand followed by 70%ethanol solution. Tissue

microarray construction and hematoxylin and eosin (H&E) staining were performed by Translation Pathology Core Laboratory (TPCL)

in UCLA using standard protocol. TPCL is aCAP/CLIA certified research facility in theUCLADepartment of Pathology and Laboratory

Medicine and a UCLA Jonsson Comprehensive Cancer Center Shared Facility. For immunohistochemistry staining, formalin-fixed,

paraffin-embedded (FFPE) sections were deparaffinized and rehydrated with a washing sequence of xylene and different concen-

tration of ethanol. Citrate buffer (pH6.0) was used to retrieve antigens. The sections were incubated in citrate buffer and heated in

a pressure cooker. 3% of H2O2 in methanol was used to block endogenous peroxidase activity for 10 mins at room temperature.

The sections were blocked then incubated with primary antibodies overnight at 4�C. Anti-mouse/rabbit secondary antibodies

were used to detect proteins of interest and DAB EqV substrate was used to visualize the staining. All components were included

in the ImmPRESS Kit (MP-7801-15 and MP-7802-15, Vector Laboratories) The slides were then dehydrated and mounted with

Xylene-based drying medium (Cat# 22-050-262, Fisher Scientific).

Western blot
Cells were lysed on ice using UREA lysis buffer (8M UREA, 4% CHAPS, 2x protease inhibitor cocktail (Cat# 11697498001, Millipore

Sigma)). Genomic DNAwas removed by ultracentrifuge (Beckman OptimaMAX-XP, rotor TLA-120.1, 48,000 rpm for 90 min). Protein

concentrations were measured using the Pierce BCA Protein Assay Kit (Cat#: 23227, Thermo Scientific). Samples were electrophor-

esed on polyacrylamide gels (Cat# NW04120BOX, Thermo Fisher), transferred to nitrocellulose membranes (Cat# 88018, Thermo

Fisher). Western blots were visualized using iBright CL1500 Imaging system (Cat#44114, Thermo Fisher).

RT-qPCR
Total RNA was isolated from cells using miRNeasy Mini Kit (Cat# 217004, Qiagen). cDNA was synthesized from 2 ug of total RNA

using the SuperScript IV First-Strand Synthesis System (Cat# 18091050, Thermo Fisher). RT-qPCR was performed using SYBR

Green PCR Master Mix (Cat# 4309155, Thermo Fisher). Amplification was carried out using the StepOne Real-Time PCR System

(Cat# 4376357, Thermo Fisher) and analysis was performed using the StepOne Software v2.3. with the following primers were

used at a concentration of 250 uM: Relative quantification was determined using the Delta-Delta Ct Method. Primer sequences

are listed in the key resources table.

In situ RNA hybridization assay and image analysis
The RNAscope Multiplex Fluorescent V2 kit was used to perform in situ hybridization on FFPE tissue microarray slides following the

manufacturer’s protocol (Cat# 323270, ACDBio). The Institutional Review Board of the University of Washington approved this study

(protocol no. 2341). All rapid autopsy tissues were collected frompatients who signedwritten informed consent under the aegis of the

Prostate Cancer Donor Program at the University of Washington. The establishment of the patient-derived xenografts was approved

by the University of Washington Institutional Animal Care and Use Committee (protocol no. 3202-01). For multiplex hybridization, the

Double Z probes targeting ASCL1 (Cat# 459721-C2, ACDBio) and ASCL2 (Cat# 323100, ACDBio) were hybridized to the samples for

2 hours at 40�C. ASCL1 signal was visualized using Opal dye 520 (Cat# FP1487001KT, Akoya Biosciences) and ASCL2 signal was

visualized using Opal dye 570 (Cat# FP1488001KT, Akoya Biosciences). DAPI (Cat# D3571, Thermo Fisher) was used to visualize
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nuclei. Confocal fluorescence images were acquired using an inverted Zeiss LSM 880 confocal microscope. All images were pro-

cessed using Fiji (https://imagej.net/software/fiji/).

Cell proliferation assay
3000 cells per cell line in five replicates were seeded on 96-well plates on Day 0. Cell viability was measured on Day 1, 3, 4, 5 and 6.

using Cell Titer-Glo Luminescent Cell Viability Assay (Cat# G7570, Promega). Luminescence was measured at an integration time of

0.5 second per well.

Bulk RNA sequencing and dataset collection
Tumors were dissociated into single cells, followed by cell sorting of triple colors (RFP, GFP and YFP) by flow cytometry. Total RNA

was extracted from the cell lysates using miRNeasy mini kit (Cat# 217084, Qiagen). Libraries for RNA-sequencing of PARCB time

course samples were prepared with KAPA Stranded mRNA-Seq Kit (Cat# KK8420, Roche). The workflow consists of mRNA enrich-

ment and fragmentation. Sequencing was performed on Illumina Hiseq 3000 or NovaSeq 6000 for PE 2x150 run. Data quality check

was done on Illumina SAV. Demultiplexing was performed with Illumina Bcl2fastq v2.19.1.403 software. Raw sequencing reads were

processed through the UCSC TOIL RNA Sequencing pipeline1 for quality control, adapter trimming, sequence alignment, and

expression quantification. Briefly, sequence adapters were trimmed using CutAdapt v1.9, sequences were then aligned to human

reference genome GRCh38 using STAR v2.4.2a and gene expression quantification was performed using RSEM v1.2.25 with tran-

script annotations from GENCODE v23.87

The FASTQ files of the Park dataset,6 Beltran dataset,33 George dataset32 and Tang dataset57 were all processed through the TOIL

pipeline with the same parameters to get RSEM expected counts. The TOIL-RSEM expected counts of TCGA pan cancer samples

were obtained directly from UCSC Xena browser (https://xenabrowser.net/datapages) and gene expression (log2(TPM + 1)) of pan-

cancer cell lines from the Cancer Cell Line Encyclopedia (CCLE) were downloaded from DepMap Portal (DepMap Public 22Q1)

(https://depmap.org/portal/download/all/). The RSEM counts of all combined datasets were upper quartile normalized, log2(x+1)

transformed (referred to as log2(UQN+1) counts) and filtered down to HUGO protein coding genes (http://www.genenames.org/)

for the downstream analyses. SCLC subtypes46 and CRPC subtypes 57were previously defined. The details of the bulk RNA-

sequencing of PARCB time course are described in Table S1I.

Differential gene expression analysis and hierarchical clustering
PARCB time course samples were grouped into 6 hierarchical clusters (HC) by performing Ward’s hierarchical clustering (k=6) on

log2(UQN + 1) counts using the hclust function from the base R package, Stats (https://stat.ethz.ch/R-manual/R-devel/library/

stats/html/00Index.html). Differential gene expression analysis was then performed on each HC in a ‘‘one vs. rest’’ fashion, i.e., be-

tween one cluster vs. the remaining five clusters, using DESeq2 with the following parameters: independentFiltering=F, cooksCu-

toff=FALSE, alpha=0.1.88 For each HC vs. rest comparison, genes with a log2FC > 2 and p-adjusted value < 0.05 were considered

upregulated for that HC genemodule. However, four genes (IL1RL1, KRT36, PIK3CG, NPY) were upregulated amongmultiple HC vs.

rest comparisons. As a result, these genes were assigned to the HC gene module with the smaller p-adjusted value for that gene.

Z-scores for upregulated genes in each cluster were then plotted in a heatmap using pheatmap function. PARCB time course sam-

ples were subsequently categorized by this HC definition in downstream analyses.

GO enrichment analysis
Enrichment analysis was performed using the ‘‘GO_Biological_Process_2021’’ database and the enrichr function from the R pack-

age, enrichR, using upregulated genes for each HC.89 Pathways were selected based on their adjusted p-value for each HC. The

results were plotted using ggplot().

Bulk ATAC sequencing and dataset collection
Tumors were dissociated into single cells, followed by cell sorting of triple colors (RFP, GFP and YFP) by flow cytometry. ATAC-

sequencing samples were prepared following the previously published protocol.38 Bulk ATAC sequencing was performed in the

Technology Center for Genomics & Bioinformatics Core in UCLA. Sequencing was performed on Illumina NovaSeq 6000 for PE

2x50 run. Data quality check was done on Illumina SAV. Demultiplexing was performed with Illumina Bcl2fastq v2.19.1.403 software.

The raw FASTQ files were processed using the published ENCODE ATAC-Seq Pipeline (https://github.com/ENCODE-DCC/atac-

seq-pipeline). The reads were trimmed and aligned to hg38 using bowtie2. Picard was used to de-duplicate reads, which were

then filtered for high-quality paired reads using SAMtools. All peak calling was performed using MACS2. The optimal irreproducible

discovery rate (IDR) thresholded peak output was used for all downstream analyses, with a threshold P value of 0.05. Other

ENCODE3 parameters were enforced with the flag-encode3. Reads that mapped to mitochondrial genes or blacklisted regions,

as defined by the ENCODE pipeline, were removed. The peak files were merged using bedtools merge to create a consensus set

of peaks across all samples, and the number of reads in each peak was determined using bedtools multicov.90 A variance stabilizing

transformation was performed on peak counts using DESeq288 and batch effects were removed using removeBatchEffect() from

limma.91 All downstream ATAC-sequencing analysis was performed using this matrix (referred to as VST peak counts), unless other-

wise specified. P1-TP1 was not collected for ATAC-sequencing due to insufficient cell number for sequencing. P7-TP2 was not

included for the processing due to low read counts (total of 1536). P1-TP5, P2-TP6 and P10-TP2 were not included in PCA due to
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reaching within 95th percentile of calculated Shannon entropy for all ATAC-sequencing samples. The details of the bulk ATAC-

sequencing processing of PARCB temporal samples are described in Table S1J.

Raw FASTQ files of Tang ATAC-sequencing dataset were downloaded from GSE193917.57 The raw FASTQ files were processed

using the same ENCODE pipeline described above with the same parameters.

Differential chromatin accessibility and Transcription start site (TSS) analysis
Differential peak analysis was performed on each HC in a one vs. rest fashion, as described above in the bulk RNA-sequencing anal-

ysis. Peaks were called hyper- or hypo- accessible if the log2 fold change was greater than 2 or less than 2, respectively, and had an

adjusted p-value of less than 0.05. The z-scores of the union of all differentially accessible peaks were used to plot the heatmap using

VST peak counts, with the rows ordered by chromosomal location.

For mapping peaks near TSS sites, the bigwig files containing ATAC-sequencing readings were first converted into wig files. Wig

files from samples within the same HCwere then merged by calculating the mean across peak regions using wiggleTools.92 The TSS

analysis was performed using deepTools and computeMatrix in reference-point mode with parameters referencePoint=TSS,

a=2000, b=2000 to compute the scores from merged bigwigs in regions 2 kbp flanking the region of interest. plotHeatmap was

used with parameters zMin=0, zMax=5, binSize=10 was to plot the TSS figure from the score matrix.93

PCA and projection analyses
Unsupervised PCA of the PARCB time course samples using log2(UQN +1) counts was performed using the prcomp function from

the stats package available on R (described above). PC2 and PC3 sample scores were then multiplied by a 30-degree clockwise

rotation matrix. Ellipses were drawn around samples with 95%confidence based on real time labels using stat_ellipse() from ggplot2.

The PCA projection of PARCB time course samples onto the framework using pan small cell cancer combined gene expression data-

sets have been discussed previously.4 In brief, the input matrix for this PCA was centered but not scaled. PARCB time course

samples were then projected by multiplying the data matrix by the PCA loadings. For projection of PARCB time course samples

onto the framework using gene expression data of CRPC subtypes57 or SCLC subtypes,46 the same methodology was applied.

For projection of PARCB time course samples onto the framework using ATAC-sequencing data of CRPC subtypes,57 peak

coverage of the Tang dataset was determined using the consensus set of peaks from the PARCB time course data with function bed-

tools multicov.90 Tang dataset peak read counts were then variance stabilized transformed using DESeq2.88 PCA was performed on

VST peak read counts of the Tang dataset using the prcomp function with the parameters center = T, scale = F. PARCB time course

samples were then projected onto the framework by multiplying PARCB time course VST peak read counts by PCA loadings.

For projection of PARCB time course single cells onto the framework defined by the bulk RNA-sequencing data, the single cell data

after integration by batch was down-sampled for 1000 cells within each patient series or cluster. The single cell and bulk RNA-

sequencing data were centered separately prior to projection. The projection was carried out bymultiplying the single cell datamatrix

by PCA loadings of PARCB bulk samples.

Transcription factor analysis
Top ranked transcription factors (TF) were selected using the gene loading scores derived from the unsupervised PCA of gene

expression described above. PC2 and PC3 loading scores were rotated 30 degrees clockwise by multiplying a 30-degree clockwise

rotation matrix to the gene loading scores (resulting components called PC2’ and PC3’, respectively). The loading scores were then

filtered to include only transcription factors.37 The center of the TF loading scores was determined by taking the average of PC1,

PC2’, and PC3’. The Euclidean distance from the center was calculated for each TF, and the top 60 TFs furthest from center

were selected. Hierarchical clustering (k = 5) was performed on the log2(UQN +1) counts of the top 60 TFs. The z-scores for each

TF were plotted using pheatmap. Average z-score of HOXC genes was calculated from HOXC 4-13 (except for HOXC7) in each

PARCB time course sample.

Shannon entropy analysis
Shannon entropy for each PARCB time course sample was calculated on variance stabilized transformed (VST) ATAC-sequencing

peak counts using the Entropy() function from the R package DescTools (https://cran.r-project.org/web/packages/DescTools/index.

html). PARCB samples falling within the 95th percentile of calculated Shannon entropy scores were included in the following PCA.

PCA was performed on VST peak counts and was plotted using ggplot2 with samples colored by their Entropy scores and ellipses

with 95% confidence were drawn around each time point group using stat_ellipse().

Prostate cancer gene regulatory network analysis
The RNA-sequencing data of PARCB time course study, Park dataset,6 Beltran dataset,33 and TCGA PRAD/PRAD-norm dataset

were included in this analysis. TCGA PRAD/PRAD-norm data was down sampled to match the sample size of other cohorts.

Gene network was built on the combined datasets using ARACNe-AP.81

Signature scores (adult stem cell, adenocarcinoma and Small cell neuroendocrine prostate cancer)
SCNPC signature was derived using Beltran dataset,33 following themethods described previously.6 The adult stem cell (ASC) signa-

ture in our analysis is defined in literature.42 For prostate adenocarcinoma signature, differential gene expression analysis was
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performed on TCGA PRAD samples vs CRPC-PRAD and SCNPC samples from the Beltran dataset10,33 using DESeq2. The adeno-

carcinoma signature was defined by all the upregulated genes (log2FoldChange >2 and padj < 0.05) from the differential gene

expression analysis. Adenocarcinoma and SCNPC signature scores of our PARCB time course samples were calculated using

gsva with method=’’ssgsea’’.

Motif analysis
Hyper-accessible peaks in each HC from the differential peak analysis described previously were used for motif enrichment anal-

ysis using GimmeMotifs 41,90. Differential motif analysis was performed on hyper-accessible peaks for each HC against a hg38

whole-genome background using the maelstrom function with default parameters. The top 5 enriched motifs and their aggregated

z-scores for each HC are shown in the heatmap (each individual HC vs all others). Additionally, we performed differential peak

analysis on HC5 vs HC1-HC4 and HC6 vs HC1-HC4 with the same parameters as described previously using DESeq2. Likewise,

hyper-accessible peaks for HC5 and HC6 in these comparisons were defined by a threshold of log2FoldChange > 2 and

padj < 0.05. Differential motif analysis was performed on the set of hyper-accessible peaks from HC5 vs HC1-4 and HC6 vs

HC1-4 using the maelstrom function as described above. Note that in the GimmeMotif enrichment analysis, transcription factors

are culled to minimize redundancy, and this step is impacted by the exact input data and sample group comparison indicated.

Thus, each motif suite may contain slightly different enriched transcription factors. However the transcription factor sets remain

highly consistent between each case.

For identifying transcription factors that recognize ASCL1 and ASCL2 regulatory sequences, ASCL1 and ASCL2 promoter and

enhancer regions were mapped using UCSC Genome Browser Gateway (https://genome.ucsc.edu/cgi-bin/hgGateway). Motif anal-

ysis was then performed on each ASCL1 and ASCL2 promoter and enhancer region using the findMotifGenome function from

HOMER with the parameters -size 200 and -mask.58 Resulting motifs were then ranked by their p-value. Additionally, ASCL1 and

ASCL2 enhancer and promoter regions were mapped to accessible peaks from ATAC-sequencing data of the PARCB time course

to identify chromatin changes of ASCL1 and ASCL2 cis-regulatory sequences. Peak regions from the PARCB consensus peak set

overlapping with the ASCL1 and ASCL2 enhancer and promoter regions were then plotted in a heatmap using VST peak counts and

scaled per sample.

Single-cell RNA sequencing
PARCB time course samples were sequenced in two batches: P2/P5 and P6/P7 series. Single cell gene expression libraries were

created using Chromium Next GEM Single Cell 3’ (v3.1 Chemistry) (Cat# PN1000123, 10x Genomics), Chromium Next GEM Chip

G Single Cell Kit (Cat# PN1000120, 10x Genomics), and Single Index Kit T Set A (Cat# PN1000213, 10x Genomics) according to

the manufacturer’s instructions. Briefly, cells were loaded to target 10,000 cells to form GEMs and barcode individual cells.

GEMs were then cleaned cDNA and libraries were also created according to manufacturer’s instructions. Library quality was as-

sessed using 4200 TapeStation System (Cat# G2991BA, Agilent) and D1000 ScreenTape (Cat# 5067-5582, Agilent) and Qubit 2.0

(Cat# Q32866, Invitrogen) for concentration and size distribution. Samples were sequenced using Novaseq 6000 sequencer

(Catl# A00454, Illumina) using 100 cycles (28+8+91). The illumina base calling files were converted to FASTQ using the mkfastq func-

tion in Cell Ranger suite (https://support.10xgenomics.com/single-cell-gene-expression/). The reads were then aligned to GRCh38

for UMI counting with cellranger count function. The details of the single cell-seq of PARCB time course are described in Table S1K.

UMAP analysis
The downstream quality control, statistics and visualization of PARCB single cell RNAseq data were performed mainly using the

Seurat (v3.2.3) R package.94 Briefly, the data from all four patient series was first filtered for cells with total number of unique features

above 500 and below 10000 as well as mitochondria feature counts below 10%. Themitochondrial genes and ribosomal genes were

then removed from the count matrix for the downstream analysis. To overcome batch effect, we performed Seurat integration be-

tween batch 1 (Series P2 and P5) and 2 (Series P6 and P7). Briefly, for each batch, the two corresponding matrices were combined

first, and log transformation and library size normalization were performed with NormalizeData function. Then the 2500 most variable

genes were selected as anchor features to integrate for all coding genes. After integration, the top 30 principal components were

used to perform UMAP analysis.

Processed single cell RNA-sequencing data of advanced prostate cancers were downloaded from the Single Cell Portal hosted by

Broad Institute (https://singlecell.broadinstitute.org/single_cell/study/SCP1244/transcriptional-mediators-of-treatment-resistance-

in-lethal-prostate-cancer).49 For this dataset, UMAP analysis was performed on TPM values of prostate cancer cells only as defined

in the paper using the umap function in base R. For UMAP visualization of this dataset, TPM values were log2 transformed with a

pseudo count of +1. Single cell RNA-sequencing data of N-myc GEMM tumors,31 and human biopsy and GEMM tumors50 were

downloaded from the Gene Expression Omnibus (GEO) database with the accession numbers GSE151426 and GSE21035, respec-

tively, and processed with cellranger count. In the Brady et al paper, single-cell data were first filtered for cells with total number of

unique features > 200 and < 10000 as well as mitochondrial feature counts < 10%. We then performed Seurat SCTransform integra-

tion on each sample. Briefly, for each sample, thematriceswere first combined and normalized using SCTransform function. Then the

top 3000 most variable genes were selected as anchor features to integrate all genes. After integration, the top 15 principal compo-

nents were used to performUMAP analysis. In the Chan et al paper, GEMMsingle-cell data were filtered with the following thresholds

nFeature_RNA >200 & nFeature_RNA < 8000 & percent.mt < 5 and human biopsy tissues single-cell data were filtered with
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nFeature_RNA > 200 & nFeature_RNA < 10000 & percent.mt < 5. Seurat integration of filtered cells for both datasets were then per-

formed as described above. After integration, the top 50 principal components were used to perform UMAP analysis.

In the Dong et al analysis, the human biopsy scRNA-sequencing data was downloaded from GSE137829. We used the filtration

parameters of themanuscript, total number of unique features > 500 and <7000, andmitochondrial feature counts < 10%.We filtered

cells to only include epithelial (cancer) cells, as described by the CellType column in the annotation. Seurat NormalizeData was used

with the LogNormalize method and a scale factor of 10000. The top 30 principal components were used to perform UMAP analysis.

Inferred cell type and cellular lineages analysis
The cell type inferences of PARCB single cells were implemented using the singleR R package.48 For scoring each cell for each gen-

eral cell type, the Human Primary Cell Atlas data from LTLA/celldex package that contains normalized expression values was used as

the reference.

Single cell trajectory analysis of PARCB samples was performed using two different methods, expression-based method

Monocle252 and RNA Velocity basedmethod scVelo.53 For Monocle2, the integrated Seurat object was used as the input for the pro-

gram. DDRtree was used as the reduction method. Cells were ordered by the most variable 3000 genes in Seurat. For calculating

pseudotime, the KRT5 population was selected as the root state. For RNA velocity, the spliced and unspliced counts were quantified

by velocyto accounting for repeat masking. The spliced counts were then normalized using Seurat sctransform method followed by

integration by batch. The integrated data was used for UMAP visualization. In scVelo, the data was filtered for genes with a minimum

of 5 shared counts. The top 3000 highly variable genes were extracted based on the dispersion. Velocities were estimated by dynam-

ical model and then projected onto the UMAP embedding.

Differential gene expression analysis in single cells
FindMarkers function in Seurat R package (described above) was used to identify differential expressed genes between ASCL1+ and

ASCL2+ single cell populations. Patient series was regressed out by including it as the covariate. ASCL1+ cells and ASCL2+ cells are

defined as cells with log normalized expression counts > 0 for ASCL1 or ASCL2, respectively. Genes that are differentially expressed

in ASCL1+ population were defined by the difference of gene expression in ASCL1+ cellsminus the one in ASCL2 expression (log and

library size normalized) above 3. Genes that are differentially expressed in ASCL2+ cells were defined by such a difference below -1.

CUT&RUN sequencing
The CUT&RUN experiment was performed using previously established method61 (Skene et al., 2018) and the manufacturer’s pro-

tocol (Cat# 86652, Cell Signaling). 100k live cells were used per reaction. 50pg of Spike-In DNA (Cat# 12931, Cell Signaling) was

added per reaction for downstream normalization. DNA was purified using MinElute PCR Purification Kit (Cat# 28004, Qiagen),

followed by fragmentation by using sonicator (Cat# M202, Covaris). Dual size selection was applied using KAPA Pure beads

(Cat# KR1245, Roche). DNA Libraries were prepared with the KAPA DNA HyperPrep kit (Cat# KK8504, Roche).

Sequencing was performed on Illumina HiSeq3000 for a SE 1x50 run. Data quality check was done on Illumina SAV. Demultiplexing

was performed with Illumina Bcl2fastq v2.19.1.403 software. Raw FASTQ files were processed using the published ENCODE-TF

CHIP Seq pipeline. Batch 1 samples (P3-TP5 and P7-TP6) were processed with the parameter "chip.paired_end" : false while Batch

2 sample (P2-TP6) were processed with the parameter ‘‘chip.paired_end’’ : true. (https://github.com/ENCODE-DCC/chip-seq-

pipeline2). For all samples, the reads were trimmed and aligned to hg38 (target) and S. cerevisiae strain S288C (spike-in) reference

genomes using bowtie2. After alignment, Picard was used to remove PCR duplicates reads and SAMtools was used to further filter

high-quality paired reads (i.e., remove reads that were unmapped, not primary alignment, reads failing platform, and/or multi-map-

ped). Peak calling was performed using MACS2. Peaks overlapping with blacklisted regions were removed (https://www.

encodeproject.org/files/ENCFF356LFX/). Lastly, spike-in normalization factors were calculated following established protocol.95

The details of the CUT&RUN sequencing of PARCB time course are described in Table S1L.

QUANTIFICATION AND STATISTICAL ANALYSIS

All data were analyzed and processed using R v4.1.2, Python v3.11.5 and Excel. Error bars showmean ± SD unless otherwise spec-

ified. Significance was determined by Student’s two-tailed unpaired t tests or Wald test with 95% confidence intervals. P values

<0.05 is considered statistically significant. P values were adjusted based on various methods dependent on the analysis including

Benjamin-Hochberg method (Figures 1D and 1F) and Bonferroni correction (Figure 4D). No statistical methods were used to prede-

termine sample sizes. Other details such as sequencing processing can be found in Table S1. All statistical methods for the bio-

informatic analyses are described in detail in the STAR Methods section.

ADDITIONAL RESOURCES

PARCB Multi-omics Explorer provides an interactive platform for visualization of gene expression using bulk RNA-sequencing and

single cell RNA-sequencing of this time course study (https://systems.crump.ucla.edu/transdiff/).
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Figure S1. Temporal gene expression programs of the PARCB transformation model reveal 
SCNPC trans-differentiation pathways. Related to Figure 1. (A) Representative H&E staining 

of squamous cell carcinoma, adenocarcinoma, and small cell carcinoma in PARCB temporal 

tumor tissue microarray. (B) Distribution of mixed squamous/adenocarcinoma, adenocarcinoma, 

and mixed small cell/adenocarcinoma histology in PARCB temporal tumors. (C) Representative 

H&E staining images of tumors at transitional stages in PARCB temporal tumors. (D) 

Representative images of Immunohistochemistry staining of HLA, P63 and AR in PARCB 

temporal tumors. (E) PCA analysis of individual PARCB patient series (P1-P10). Note, each 

patient series time point is a tumor derived from the same starting material: a particular patient 

sample transformed by PARCB, then grown independently in different mice and harvested at the 

indicated time point. Thus, late time-point tumors from the same patient material, but with distinct 

ASCL2+ (HC5) or ASCL1+ (HC6) status do not necessarily represent late jumps between these 

states (i.e., P10-TP4 and P10-TP5). In other words, it is possible that the tumor in each of these 

individual mouse cases had at even earlier, non-sampled, time points began to commit to the 

ASCL2+ or ASCL1+ trajectory. (F) Two-dimensional visualization of PCA analysis of PARCB time 

course series using bulk RNA-sequencing. Left: PC1 vs -PC3. Right: PC1 vs PC2. 
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Figure S2. Sequential transcription regulators modulate reprogramming and 
neuroendocrine programs through a highly entropic and accessible chromatin state. 
Related to Figure 2. (A) PCA analysis of PARCB temporal samples masked with corresponding 

entropy scores using bulk RNA sequencing. (B) Motif enrichment analysis of HC5 (a) or HC6 (b) 

vs. HC1-4 (A) PCA analysis of PARCB temporal samples colored by their entropy scores based 

on bulk RNA sequencing. (B) Motif enrichment analysis of HC5 (a) or HC6 (b) vs. HC1-4. Note 

that in the GimmeMotif enrichment analysis, transcription factors are culled to minimize 

redundancy, and this step is impacted by the exact input data and sample group comparison 

indicated. Thus, each motif suite may contain slightly different enriched transcription factors. 

However the transcription factors set remain highly consistent between each case. Top 10 motif 

suites for each comparison are shown, with full results in Table S1D. (C) Adult stem cell signature 

1 and SCNPC scores 2-4 of each HC. (D) PCA loading visualization of top ranked transcription 

factors in PC1 vs PC2 using bulk RNA sequencing. 
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Figure S3. Transcription factor-defined cell populations contribute to lineage divergence 
and tumor heterogeneity. Related to Figure 3. (A) UMAP analysis of single cell RNA-seq 

samples labeled by the time of collection (TP3-TP6) and HC (HC3-6). (B) SCNPC scores2 of each 

single cell. (C) Density analysis of the distribution of ASCL1 and ASCL2 expression in PARCB 

temporal tumors using single cell RNA sequencing. (D) PCA analysis of PARCB temporal tumor 

samples and corresponding expression of KRT5, ASCL1, ASCL2 and NEUROD1 using single 

cell RNA sequencing. (E) Single cell-based heterogeneity of top ranked transcription factors 

defined previously by bulk RNA sequencing (Figure 2E), across the identified HCs. 4000 cells 

were randomly selected for the plot. (F) Percentage distribution of neuroendocrine marker 

expressing cells in the ASCL1- or ASCL2-positive population in PARCB temporal study using 

single cell RNA sequencing. Low/medium/high expression of CHGA/NCAM1/SYP expression are 

defined by the following cut-offs: low expression: [0, 1), medium: [1, 2), high: >=2. 
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Figure S4. ASCL1 and ASCL2 specify independent transcriptional programs and sub-
lineages in SCNPC. Related to Figure 4. (A) Inferred clonal tracing analysis and expression of 

KRT5 (basal marker), ASCL1, ASCL2 and NEUROD1 by RNA Velocity 5. UMAP analysis includes 

the top 20 PCA dimensions. (B) Expression of previously defined ASCL2 direct targets in 

intestinal stem cells  6 vs. ASCL1 or ASCL2 in PARCB time course study. (C) RT-qPCR analysis 

of ASCL2 in 293T alone, 293T with exogenous expression of ASCL2 (ASCL2 OE) and multiple 

PARCB end point tumor derived cell lines. (D) Signature scores (left) and heatmaps (right) of 

ASCL1 and ASCL2 transcriptional programs/gene sets from HC5/6 genes (Figure 1D)(top) and 

ASCL1/2 ARACNE genes (Figure 4E)(bottom) in PARCB tumor derived cell lines with respective 

exogenous expression of ASCL1 or ASCL2.  
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Figure S5. ASCL1 and ASCL2 as pan-cancer classifiers. Related to Figure 5. (A) In situ RNA 

hybridization of ASCL1 and ASCL2 in clinical CRPC-PRAD and SCNPC tissues.  (B) In situ RNA 

hybridization of ASCL1 and ASCL2 in the FHPCX20-01A and FHPCX20-01B CRPC PDX models.  

(C) Western blot analysis of selected cell lines from CCLE including lung squamous carcinoma, 

subtypes of SCLC, and SCNPC cell lines. 
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Figure S6. Alternating ASCL1 and ASCL2 expressions through reciprocal interaction and 
TFAP4 epigenetic regulation. Related to Figure 6. (A) RT-PCR of ASCL1 (left) and ASCL2 

(right) in PARCB tumor derived cell lines with or without exogenous expression of V5 tagged 

ASCL1. (B) Western blot analysis of TFAP4 expression in multiple PARCB tumor derived cell 

lines. (C) Differential binding analysis of TFAP4 on ASCL1 and ASCL2 promoter and enhancer 

regions by CUT&RUN using TFAP4 antibody7. (D) Western blot analysis of doxycycline-inducible 

knockout of TFAP4 and proteins of interest in multiple SCNPC cell lines including NCI-H660 and 

PARCB tumors derived cell lines8. DOX: doxycycline. (E) mRNA expression of TFAP4 in normal 

tissue (GTEx) and pan cancer tumors (TCGA). 
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